Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jakub Micha'nk'ow & Pawe{l} Sakowski & Robert 'Slepaczuk, 2023. "Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies," Papers 2309.10546, arXiv.org.
References listed on IDEAS
- Topcu, Mert & Gulal, Omer Serkan, 2020. "The impact of COVID-19 on emerging stock markets," Finance Research Letters, Elsevier, vol. 36(C).
- Caporale, Guglielmo Maria & Plastun, Alex, 2019.
"The day of the week effect in the cryptocurrency market,"
Finance Research Letters, Elsevier, vol. 31(C).
- Guglielmo Maria Caporale & Alex Plastun, 2017. "The Day of the Week Effect in the Crypto Currency Market," Discussion Papers of DIW Berlin 1694, DIW Berlin, German Institute for Economic Research.
- Guglielmo Maria Caporale & Alex Plastun, 2017. "The Day of the Week Effect in the Crypto Currency Market," CESifo Working Paper Series 6716, CESifo.
- Grobys, Klaus & Ahmed, Shaker & Sapkota, Niranjan, 2020. "Technical trading rules in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 32(C).
- Junming Yang & Yaoqi Li & Xuanyu Chen & Jiahang Cao & Kangkang Jiang, 2019. "Deep Learning for Stock Selection Based on High Frequency Price-Volume Data," Papers 1911.02502, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
- ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
- Guglielmo Maria Caporale & Alex Plastun, 2019.
"Price overreactions in the cryptocurrency market,"
Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(5), pages 1137-1155, August.
- Guglielmo Maria Caporale & Alex Plastun, 2018. "Price Overreactions in the Cryptocurrency Market," Discussion Papers of DIW Berlin 1718, DIW Berlin, German Institute for Economic Research.
- Guglielmo Maria Caporale & Alex Plastun, 2018. "Price Overreactions in the Cryptocurrency Market," CESifo Working Paper Series 6861, CESifo.
- Brada, Josef C. & Gajewski, Paweł & Kutan, Ali M., 2021. "Economic resiliency and recovery, lessons from the financial crisis for the COVID-19 pandemic: A regional perspective from Central and Eastern Europe," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Prelorentzos, Arsenios-Georgios N. & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Xidonas, Panos & Goutte, Stephane & Thomakos, Dimitrios D., 2024. "Introducing the GVAR-GARCH model: Evidence from financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021.
"Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies,"
The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
- Petukhina, Alla A. & Reule, Raphael C. G. & Härdle, Wolfgang Karl, 2019. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," IRTG 1792 Discussion Papers 2019-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Ștefan Cristian Gherghina & Daniel Ștefan Armeanu & Camelia Cătălina Joldeș, 2020. "Stock Market Reactions to COVID-19 Pandemic Outbreak: Quantitative Evidence from ARDL Bounds Tests and Granger Causality Analysis," IJERPH, MDPI, vol. 17(18), pages 1-35, September.
- Shaturaev, Jakhongir, 2023. "Impact of Covid-19 on stock market volatility-A Bangladesh Perspective," MPRA Paper 118207, University Library of Munich, Germany, revised 10 Mar 2023.
- Xie, Yutang & Cao, Yujia & Li, Xiaotao, 2023. "The importance of trade policy uncertainty to energy consumption in a changing world," Finance Research Letters, Elsevier, vol. 52(C).
- Yousaf, Imran & Beljid, Makram & Chaibi, Anis & Ajlouni, Ahmed AL, 2022. "Do volatility spillover and hedging among GCC stock markets and global factors vary from normal to turbulent periods? Evidence from the global financial crisis and Covid-19 pandemic crisis," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
- Jialei Jiang & Eun-Mi Park & Seong-Taek Park, 2021. "The Impact of the COVID-19 on Economic Sustainability—A Case Study of Fluctuation in Stock Prices for China and South Korea," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
- Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
- Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
- Ajithakumari Vijayappan Nair Biju & Ann Susan Thomas, 2023. "Uncertainties and ambivalence in the crypto market: an urgent need for a regional crypto regulation," SN Business & Economics, Springer, vol. 3(8), pages 1-21, August.
- Guglielmo Maria Caporale & Alex Plastun, 2020.
"Momentum effects in the cryptocurrency market after one-day abnormal returns,"
Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 251-266, September.
- Guglielmo Maria Caporale & Alex Plastun, 2019. "Momentum Effects in the Cryptocurrency Market After One-Day Abnormal Returns," CESifo Working Paper Series 7917, CESifo.
- Viktor Manahov, 2024. "The rapid growth of cryptocurrencies: How profitable is trading in digital money?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2214-2229, April.
- Katarzyna Czech & Michał Wielechowski & Pavel Kotyza & Irena Benešová & Adriana Laputková, 2020. "Shaking Stability: COVID-19 Impact on the Visegrad Group Countries’ Financial Markets," Sustainability, MDPI, vol. 12(15), pages 1-19, August.
More about this item
Keywords
machine learning; recurrent neural networks; long short-term memory; algorithmic investment strategies; testing architecture; loss function; walk-forward optimization; over-optimization;All these keywords.
JEL classification:
- C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-10-23 (Big Data)
- NEP-CMP-2023-10-23 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2023-23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.