IDEAS home Printed from https://ideas.repec.org/p/wai/econwp/18-14.html
   My bibliography  Save this paper

Interventions to Mitigate Indoor Air Pollution: A Cost-Benefit Analysis

Author

Listed:
  • Muhammad Irfan

    (University of Waikato)

  • Michael P. Cameron

    (University of Waikato)

  • Gazi Hassan

    (University of Waikato)

Abstract

Globally, around three billion people depend upon solid fuels such as firewood, dry animal dung, crop residues, or coal, and use traditional stoves for cooking and heating purposes. This solid fuel combustion causes indoor air pollution (IAP) and severely impairs health and the environment, especially in developing countries like Pakistan. A number of alternative household energy strategies can be adopted to mitigate IAP, such as using liquid petroleum gas (LPG), natural gas, biogas, electric stoves, or improved cook stoves (ICS). In this study, we estimate the benefit-cost ratios and net present value of these interventions over a ten-year period in Pakistan. Annual costs include both fixed and operating costs, whereas benefits cover health, productivity gains, time savings, and fuel savings. We find that LPG has the highest benefit-cost ratio followed by Natural gas, and ICS has the lowest benefit-cost ratio. Electric stoves, and biogas have moderate benefit-cost ratios that nevertheless exceed one. To maximize the return on cleaner burning technology, the government of Pakistan should consider encouraging the adoption of LPG, piped natural gas, and electric stoves as means to reduce IAP and adopt clean technologies.

Suggested Citation

  • Muhammad Irfan & Michael P. Cameron & Gazi Hassan, 2018. "Interventions to Mitigate Indoor Air Pollution: A Cost-Benefit Analysis," Working Papers in Economics 18/14, University of Waikato, revised 06 Jan 2021.
  • Handle: RePEc:wai:econwp:18/14
    as

    Download full text from publisher

    File URL: https://repec.its.waikato.ac.nz/wai/econwp/1814.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diana Bonfim & Qinglei Dai, 2017. "Bank Size and Lending Specialisation," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 46(2), pages 329-380, July.
    2. Amjid, Syed S. & Bilal, Muhammad Q. & Nazir, Muhammad S. & Hussain, Altaf, 2011. "Biogas, renewable energy resource for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2833-2837, August.
    3. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    4. Hans-W. Micklitz & Lucia A. Reisch & Fernando Gomez, 2017. "Editorial to a Special Section," Journal of Consumer Policy, Springer, vol. 40(2), pages 177-177, June.
    5. Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
    6. Edwards, John H. Y. & Langpap, Christian, 2012. "Fuel choice, indoor air pollution and children's health," Environment and Development Economics, Cambridge University Press, vol. 17(4), pages 379-406, August.
    7. Muhammad Irfan & Michael P. Cameron & Gazi Hassan, 2017. "Households’ Energy Mix Selection in Pakistan," Working Papers in Economics 17/28, University of Waikato.
    8. Gejadze, Maia & Giot, Pierre & Schwienbacher, Armin, 2017. "Private equity fundraising and firm specialization," The Quarterly Review of Economics and Finance, Elsevier, vol. 64(C), pages 259-274.
    9. Viscusi, W. Kip & Masterman, Clayton J., 2017. "Income Elasticities and Global Values of a Statistical Life," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 8(2), pages 226-250, July.
    10. Muhammad Irfan & Michael P. Cameron & Gazi Hassan, 2017. "Household Energy Elasticities in Pakistan: An Application of the LA-AIDS Model on Pooled Household Data," Working Papers in Economics 17/11, University of Waikato.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Irfan & Michael P. Cameron & Gazi Hassan, 2021. "Can income growth alone increase household consumption of cleaner fuels? Evidence from Pakistan," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(2), pages 121-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    2. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    3. Athar Mahmood & Xiukang Wang & Ahmad Naeem Shahzad & Sajid Fiaz & Habib Ali & Maria Naqve & Muhammad Mansoor Javaid & Sahar Mumtaz & Mehwish Naseer & Renji Dong, 2021. "Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    4. Zanxin Wang & Saqib Ali & Ahsan Akbar & Farhan Rasool, 2020. "Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media," IJERPH, MDPI, vol. 17(7), pages 1-20, March.
    5. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    7. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    8. Delis, Manthos D. & Hasan, Iftekhar & Tsionas, Efthymios G., 2015. "Firms' risk endogenous to strategic management choices," Bank of Finland Research Discussion Papers 16/2015, Bank of Finland.
    9. Ziebarth, Nicolas R. & Schmitt, Maike & Karlsson, Martin, 2013. "The Short-Term Population Health Effects of Weather and Pollution: Implications of Climate Change," IZA Discussion Papers 7875, Institute of Labor Economics (IZA).
    10. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    11. Fricke, Daniel & Roukny, Tarik, 2020. "Generalists and specialists in the credit market," Journal of Banking & Finance, Elsevier, vol. 112(C).
    12. Chen, Simiao & Prettner, Klaus & Kuhn, Michael & Bloom, David E., 2021. "The economic burden of COVID-19 in the United States: Estimates and projections under an infection-based herd immunity approach," The Journal of the Economics of Ageing, Elsevier, vol. 20(C).
    13. Zubova, E., 2022. "Value of statistical life in Russia based on microdata," Journal of the New Economic Association, New Economic Association, vol. 53(1), pages 163-179.
    14. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    15. Delis, Manthos D. & Hasan, Iftekhar & Tsionas, Efthymios G., 2015. "Firms’ risk endogenous to strategic management choices," Research Discussion Papers 16/2015, Bank of Finland.
    16. Pullabhotla, Hemant K. & Souza, Mateus, 2022. "Air pollution from agricultural fires increases hypertension risk," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    17. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    18. James K. Hammitt & Peter Morfeld & Jouni T. Tuomisto & Thomas C. Erren, 2020. "Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 674-695, April.
    19. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    20. Marcela V. Parada‐Contzen, 2019. "The Value of a Statistical Life for Risk‐Averse and Risk‐Seeking Individuals," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2369-2390, November.

    More about this item

    Keywords

    indoor air pollution; interventions; cost-benefit analysis;
    All these keywords.

    JEL classification:

    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wai:econwp:18/14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dewaknz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geua Boe-Gibson (email available below). General contact details of provider: https://edirc.repec.org/data/dewaknz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.