IDEAS home Printed from https://ideas.repec.org/p/ver/wpaper/14-2013.html
   My bibliography  Save this paper

A powerful test of mean stationarity in dynamic models for panel data: Monte Carlo evidence

Author

Listed:
  • Giorgio Calzolari

    () (University of Florence)

  • Laura Magazzini

    () (Department of Economics (University of Verona))

Abstract

No abstract is available for this item.

Suggested Citation

  • Giorgio Calzolari & Laura Magazzini, 2013. "A powerful test of mean stationarity in dynamic models for panel data: Monte Carlo evidence," Working Papers 14/2013, University of Verona, Department of Economics.
  • Handle: RePEc:ver:wpaper:14/2013
    as

    Download full text from publisher

    File URL: http://dse.univr.it/home/workingpapers/wp2013n14.pdf
    File Function: First version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    3. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    4. Stephen Bond & Frank Windmeijer, 2005. "Reliable Inference For Gmm Estimators? Finite Sample Properties Of Alternative Test Procedures In Linear Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 1-37.
    5. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. Bond, Stephen & Bowsher, Clive & Windmeijer, Frank, 2001. "Criterion-based inference for GMM in autoregressive panel data models," Economics Letters, Elsevier, vol. 73(3), pages 379-388, December.
    10. Giorgio Calzolari & Laura Magazzini, 2011. "Moment Conditions and Neglected Endogeneity in Panel Data Models," Working Papers 02/2011, University of Verona, Department of Economics.
    11. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Calzolari & Laura Magazzini, 2014. "Improving GMM efficiency in dynamic models for panel data with mean stationarity," Working Papers 12/2014, University of Verona, Department of Economics.
    2. Tue Gorgens & Chirok Han & Sen Xue, 2016. "Asymptotic distributions of the quadratic GMM estimator in linear dynamic panel data models," ANU Working Papers in Economics and Econometrics 2016-635, Australian National University, College of Business and Economics, School of Economics.
    3. Tue Gorgens & Chirok Han & Sen Xue, 2016. "Moment restrictions and identification in linear dynamic panel data models," ANU Working Papers in Economics and Econometrics 2016-633, Australian National University, College of Business and Economics, School of Economics.

    More about this item

    Keywords

    panel data; dynamic model; GMM estimation; test of overidentifying restrictions;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ver:wpaper:14/2013. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Reiter). General contact details of provider: http://edirc.repec.org/data/isverit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.