IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Capturing the Impact of Latent Industry-Wide Shocks with Dynamic Panel Model

Listed author(s):
  • KiHoon Jimmy Hong
  • Bin Peng

    ()

  • Xiaohui Zhang

    (School of Management and Governance, Murdoch University)

Expanding the panel model of Pesaran (2006) and Bai (2009), we propose a dynamic panel specification with Bayesian approach to capture the impact of unobservable industry-wide shocks to stock price movements. We employ fundamental accounting information to control company specific shocks and equity market index to capture market wide common shocks. Our model is designed to resolve the potential multicollinearity problem that is known to exist when the industry factors are considered by extracting the industry-wide shocks using Bayesian method.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.uts.edu.au/sites/default/files/rp347.pdf
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 347.

as
in new window

Length: 28 pages
Date of creation: 01 Mar 2014
Handle: RePEc:uts:rpaper:347
Contact details of provider: Postal:
PO Box 123, Broadway, NSW 2007, Australia

Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. F. Moscone & E. Tosetti, 2010. "Health expenditure and income in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 19(12), pages 1385-1403, December.
  2. Joshua C.C. Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2013. "Invariant Inference and Efficient Computation in the Static Factor Model," CAMA Working Papers 2013-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  3. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
  4. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
  5. JULES H. van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present-Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, 08.
  6. Clement, Michael B. & Hales, Jeffrey & Xue, Yanfeng, 2011. "Understanding analysts' use of stock returns and other analysts' revisions when forecasting earnings," Journal of Accounting and Economics, Elsevier, vol. 51(3), pages 279-299, April.
  7. Chen, Peter & Zhang, Guochang, 2007. "How do accounting variables explain stock price movements? Theory and evidence," Journal of Accounting and Economics, Elsevier, vol. 43(2-3), pages 219-244, July.
  8. repec:bla:joares:v:38:y:2000:i:2:p:271-295 is not listed on IDEAS
  9. Larrain, Borja & Yogo, Motohiro, 2008. "Does firm value move too much to be justified by subsequent changes in cash flow," Journal of Financial Economics, Elsevier, vol. 87(1), pages 200-226, January.
  10. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
  11. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
  12. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, 07.
  13. Harford, Jarrad, 2005. "What drives merger waves?," Journal of Financial Economics, Elsevier, vol. 77(3), pages 529-560, September.
  14. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, 07.
  15. Lessard, Donald R, 1974. "World, National, and Industry Factors in Equity Returns," Journal of Finance, American Finance Association, vol. 29(2), pages 379-391, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:347. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.