IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Using Bayesian Variable Selection Methods to Choose Style Factors in Global Stock Return

This paper applies Bayesian variable selection methods from the statistics literature to give guidance in the decision to include/omit factors in a global (linear factor) stock return model. Once one has accounted for country and sector, it is possible to see which style or styles best explains current asset returns. This study does not find compelling evidence for global styles, once country and sector have been accounted for.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp31.pdf
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 31.

as
in new window

Length:
Date of creation: 01 Mar 2000
Date of revision:
Handle: RePEc:uts:rpaper:31
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kuo, G. W. & Satchell, S. E., 1998. "Global Equity Styles and Industry Effects: Portfolio Construction via Dummy Variables," Cambridge Working Papers in Economics 9807, Faculty of Economics, University of Cambridge.
  2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
  3. Huberman, Gur & Kandel, Shmuel & Stambaugh, Robert F, 1987. " Mimicking Portfolios and Exact Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 42(1), pages 1-9, March.
  4. Smith, M. & Kohn, R., 1998. "Nonparametric Seemingly Unrelated Regression," Monash Econometrics and Business Statistics Working Papers 7/98, Monash University, Department of Econometrics and Business Statistics.
  5. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.