IDEAS home Printed from https://ideas.repec.org/p/usg/dp2010/2010-22.html
   My bibliography  Save this paper

Identification of average treatment effects in social experiments under different forms of attrition

Author

Listed:
  • Martin Huber

    ()

Abstract

As any empirical method used for causal analysis, social experiments are prone to attrition which may flaw the validity of the results. This paper considers the problem of partially missing outcomes in experiments. Firstly, it systematically reveals under which forms of attrition - in terms of its relation to observable and/or unobservable factors - experiments do (not) yield causal parameters. Secondly, it shows how the various forms of attrition can be controlled for by different methods of inverse probability weighting (IPW) that are tailored to the specific missing data problem at hand. In particular, it discusses IPW methods that incorporate instrumental variables when attrition is related to unobservables, which has been widely ignored in the experimental literature.

Suggested Citation

  • Martin Huber, 2010. "Identification of average treatment effects in social experiments under different forms of attrition," University of St. Gallen Department of Economics working paper series 2010 2010-22, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2010:2010-22
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/dp2010/DP-1022-Hu.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, Oxford University Press, vol. 114(2), pages 497-532.
    2. Ana Llena-Nozal & Maarten Lindeboom & France Portrait, 2004. "The effect of work on mental health: does occupation matter?," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1045-1062.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Dean Karlan & John A. List, 2007. "Does Price Matter in Charitable Giving? Evidence from a Large-Scale Natural Field Experiment," American Economic Review, American Economic Association, vol. 97(5), pages 1774-1793, December.
    5. Kosuke Imai, 2009. "Statistical analysis of randomized experiments with non-ignorable missing binary outcomes: an application to a voting experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 83-104.
    6. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    7. Joshua Angrist & Eric Bettinger & Michael Kremer, 2006. "Long-Term Educational Consequences of Secondary School Vouchers: Evidence from Administrative Records in Colombia," American Economic Review, American Economic Association, vol. 96(3), pages 847-862, June.
    8. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," Review of Economic Studies, Oxford University Press, vol. 76(3), pages 1071-1102.
    9. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    10. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    11. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    12. Hausman, Jerry A & Wise, David A, 1979. "Attrition Bias in Experimental and Panel Data: The Gary Income Maintenance Experiment," Econometrica, Econometric Society, vol. 47(2), pages 455-473, March.
    13. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    14. Joshua Angrist & Victor Lavy, 2009. "The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial," American Economic Review, American Economic Association, vol. 99(4), pages 1384-1414, September.
    15. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    16. Paul Gertler, 2004. "Do Conditional Cash Transfers Improve Child Health? Evidence from PROGRESA's Control Randomized Experiment," American Economic Review, American Economic Association, vol. 94(2), pages 336-341, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    2. Barbara Sianesi, 2013. "Dealing with randomisation bias in a social experiment exploiting the randomisation itself: the case of ERA," IFS Working Papers W13/15, Institute for Fiscal Studies.
    3. Huber, Martin & Lechner, Michael & Steinmayr, Andreas, 2012. "Radius matching on the propensity score with bias adjustment: finite sample behaviour, tuning parameters and software implementation," Economics Working Paper Series 1226, University of St. Gallen, School of Economics and Political Science.
    4. Huber, Martin, 2012. "Identifying causal mechanisms in experiments (primarily) based on inverse probability weighting," Economics Working Paper Series 1213, University of St. Gallen, School of Economics and Political Science, revised May 2013.

    More about this item

    Keywords

    experiments; attrition; inverse probability weighting;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2010:2010-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Martina Flockerzi). General contact details of provider: http://edirc.repec.org/data/vwasgch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.