IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2003048.html
   My bibliography  Save this paper

Proper Rationalizability and Belief Revision in Dynamic Games

Author

Listed:
  • Perea Andrés

    (METEOR)

Abstract

In this paper we develop an epistemic model for dynamic games in which players may revise their beliefs about the opponents'' preferences (including the opponents'' utility functions) as the game proceeds. Within this framework, we propose a rationalizability concept that is based upon the following three principles: (1) at every instance of the game, a player should believe that his opponents are carrying out optimal strategies, (2) a player should only revise his belief about an opponent''s relative ranking of two strategies if he is certain that the opponent has decided not to choose one of these strategies, and (3) the players'' initial beliefs about the opponents'' utility functions should agree on a given profile u of utility functions. Common belief about these events leads to the concept of persistent rationalizability for the profile u of utility functions. It is shown that for a given profile u of utility functions, every properly rationalizable strategy for ``types with non-increasing type supports'''' is a persistently rationalizable strategy for u. This result implies that persistently rationalizable strategies always exist for all game trees and all profiles of utility functions.

Suggested Citation

  • Perea Andrés, 2003. "Proper Rationalizability and Belief Revision in Dynamic Games," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2003048
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/portal/files/711328/content
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    2. Drew Fudenberg & David M. Kreps & David K. Levine, 2008. "On the Robustness of Equilibrium Refinements," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 5, pages 67-93 World Scientific Publishing Co. Pte. Ltd..
    3. Elmes Susan & Reny Philip J., 1994. "On the Strategic Equivalence of Extensive Form Games," Journal of Economic Theory, Elsevier, vol. 62(1), pages 1-23, February.
    4. Epstein, Larry G & Wang, Tan, 1996. ""Beliefs about Beliefs" without Probabilities," Econometrica, Econometric Society, vol. 64(6), pages 1343-1373, November.
    5. Lawrence Blume & Adam Brandenburger & Eddie Dekel, 2014. "Lexicographic Probabilities and Choice Under Uncertainty," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 6, pages 137-160 World Scientific Publishing Co. Pte. Ltd..
    6. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    7. Battigalli, Pierpaolo, 1996. "Strategic Independence and Perfect Bayesian Equilibria," Journal of Economic Theory, Elsevier, vol. 70(1), pages 201-234, July.
    8. Philip J. Reny, 1992. "Rationality in Extensive-Form Games," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 103-118, Fall.
    9. van Damme, E.E.C., 1984. "A relation between perfect equilibria in extensive form games and proper equilibria in normal form games," Other publications TiSEM 3734d89e-fd5c-4c80-a230-5, Tilburg University, School of Economics and Management.
    10. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Geir B. Asheim, 2002. "Proper rationalizability in lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 453-478.
    12. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    13. Reny Philip J., 1993. "Common Belief and the Theory of Games with Perfect Information," Journal of Economic Theory, Elsevier, vol. 59(2), pages 257-274, April.
    14. Frank Schuhmacher, 1999. "Proper rationalizability and backward induction," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 599-615.
    15. Rubinstein, Ariel, 1991. "Comments on the Interpretation of Game Theory," Econometrica, Econometric Society, vol. 59(4), pages 909-924, July.
    16. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    17. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
    18. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    19. Zauner, Klaus G., 2002. "The existence of equilibrium in games with randomly perturbed payoffs and applications to experimental economics," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 115-120, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    More about this item

    Keywords

    mathematical economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2003048. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Leonne Portz). General contact details of provider: http://edirc.repec.org/data/meteonl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.