IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/2308.html
   My bibliography  Save this paper

Confidence Intervals for Intentionally Biased Estimators

Author

Listed:

Abstract

We propose and study two confidence intervals (CIs) centered at an estimator that is intentionally biased in order to reduce mean squared error. The first CI simply uses an unbiased estimator's standard error. It is not obvious that this CI should work well; indeed, for confidence levels below 68.3%, the coverage probability can be near zero, and the CI using the biased estimator's standard error is also known to suffer from undercoverage. However, for confidence levels 91.7% and higher, even if the unbiased and biased estimators have identical mean squared error (which yields a bound on coverage probability), our CI is better than the benchmark CI centered at the unbiased estimator: they are the same length, but our CI has higher coverage probability (lower coverage error rate), regardless of the magnitude of bias. That is, whereas generally there is a tradeoff that requires increasing CI length in order to reduce the coverage error rate, in this case we can reduce the error rate for free (without increasing length) simply by recentering the CI at the biased estimator instead of the unbiased estimator. If rounding to the nearest hundredth of a percent, then even at the 90% confidence level our CI's worst-case coverage probability is 90.00% and can be significantly higher depending on the magnitude of bias. In addition to its favorable statistical properties, our proposed CI applies broadly and is simple to compute, making it attractive in practice. Building on these results, our second CI trades some of the first CI's "excess" coverage probability for shorter length. It also dominates the benchmark CI (centered at unbiased estimator) for conventional confidence levels, with higher coverage probability and shorter length, so we recommend this CI in practice.

Suggested Citation

  • David M. Kaplan & Xin Liu, 2023. "Confidence Intervals for Intentionally Biased Estimators," Working Papers 2308, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:2308
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/13l6_IROJrZim5NLRkr2-hwLQDAah6rir/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    4. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Alejo & Gabriel Montes-Rojas, 2021. "Quantile Regression under Limited Dependent Variable," Papers 2112.06822, arXiv.org.
    2. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    5. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    6. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    7. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    8. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    9. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    10. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    11. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    12. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    13. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    14. Riccardo Scarpa, 2000. "Contingent Valuation Versus Choice Experiments: Estimating the Benefits of Environmentally Sensitive Areas in Scotland: Comment," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(1), pages 122-128, January.
    15. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    16. Fu Ouyang & Thomas Tao Yang & Hanghui Zhang, 2020. "Semiparametric Identification and Estimation of Discrete Choice Models for Bundles," ANU Working Papers in Economics and Econometrics 2020-672, Australian National University, College of Business and Economics, School of Economics.
    17. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    18. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    19. Marcin Owczarczuk, 2007. "On modified discriminant analysis," Working Papers 6, Department of Applied Econometrics, Warsaw School of Economics.
    20. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    21. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    22. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.

    More about this item

    Keywords

    averaging estimators; bias-variance tradeoff; coverage probability; mean squared error; smoothing;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:2308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.