IDEAS home Printed from https://ideas.repec.org/p/udb/wpaper/uwec-2009-01.html
   My bibliography  Save this paper

Predicting Stock Volatility Using After-Hours Information

Author

Listed:
  • Chun-Hung Chen

    (KPMG)

  • Wei-Choun Yu

    (Winona State University)

  • Eric Zivot

    (University of Washington)

Abstract

We use realized volatilities based on after hours high frequency returns to predict next day volatility. We extend GARCH and long-memory forecasting models to include additional information: the whole night, the preopen, the postclose realized variance, and the overnight squared return. For four NASDAQ stocks (MSFT, AMGN, CSCO, and YHOO) we find that the inclusion of the preopen variance can improve the out-of-sample forecastability of the next day conditional day volatility. Additionally, we find that the postclose variance and the overnight squared return do not provide any predictive power for the next day conditional volatility. Our findings support the results of prior studies that traders trade for non-information reasons in the postclose period and trade for information reasons in the preopen period.

Suggested Citation

  • Chun-Hung Chen & Wei-Choun Yu & Eric Zivot, 2009. "Predicting Stock Volatility Using After-Hours Information," Working Papers UWEC-2009-01, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2009-01
    as

    Download full text from publisher

    File URL: http://faculty.washington.edu/ezivot/research/afterHoursGarch.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    2. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
    3. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Charles Cao & Eric Ghysels & Frank Hatheway, 2000. "Price Discovery without Trading: Evidence from the Nasdaq Preopening," Journal of Finance, American Finance Association, vol. 55(3), pages 1339-1365, June.
    6. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    7. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," NBER Technical Working Papers 0279, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2009-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt). General contact details of provider: http://edirc.repec.org/data/deuwaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.