IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/1995-05.html
   My bibliography  Save this paper

Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut

Author

Listed:
  • Pami Dua

    (University of Connecticut)

  • Stephen Miller

    (University of Connecticut)

Abstract

We develop coincident and leading employment indexes for the Connecticut economy. Four employment-related variables enter the coincident index while five employment-related variables enter the leading index. The peaks and troughs in the leading index lead the peaks and troughs in the coincident index by an average of 3 and 9 months. Finally, we use the leading index in vector-autoregressive (VAR) and Bayesian vector-autoregressive (BVAR) models to forecast the coincident index, nonfarm employment, and the unemployment rate.

Suggested Citation

  • Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
  • Handle: RePEc:uct:uconnp:1995-05
    as

    Download full text from publisher

    File URL: https://media.economics.uconn.edu/working/1995-05.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    2. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    3. Robert B. Litterman, 1984. "Above-average national growth in 1985 and 1986," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    4. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    5. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    6. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    7. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    8. Cullity, John P., 1993. "Monitoring business conditions at the CIBCR," International Journal of Forecasting, Elsevier, vol. 9(1), pages 39-48, April.
    9. Zarnowitz, Victor & Moore, Geoffrey H, 1982. "Sequential Signals of Recession and Recovery," The Journal of Business, University of Chicago Press, vol. 55(1), pages 57-85, January.
    10. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, November.
    11. Dua, Pami & Miller, Stephen M, 1996. "Forecasting Connecticut Home Sales in a BVAR Framework Using Coincident and Leading Indexes," The Journal of Real Estate Finance and Economics, Springer, vol. 13(3), pages 219-235, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longhi, Simonetta & Nijkamp, Peter, 2006. "Forecasting regional labor market developments under spatial heterogeneity and spatial correlation," Serie Research Memoranda 0015, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    3. Ahking, Francis, W. & Pattanapancha, Maneechit, 2000. "The Linkage Between State and National Output: A Case Study of Connecticut," The Review of Regional Studies, Southern Regional Science Association, vol. 30(2), pages 137-145, Fall.
    4. Caraiani, Petre, 2010. "Forecasting Romanian GDP Using a BVAR Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 76-87, December.
    5. Simonetta Longhi & Peter Nijkamp, 2005. "Forecasting Regional Labour Market Developments Under Spatial Heterogeneity and Spatial Autocorrelation," Tinbergen Institute Discussion Papers 05-041/3, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    2. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    3. Peter C.B. Phillips, 1992. "Bayes Methods for Trending Multiple Time Series with an Empirical Application to the US Economy," Cowles Foundation Discussion Papers 1025, Cowles Foundation for Research in Economics, Yale University.
    4. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    5. Pami Dua & Stephen M. Miller & David J. Smyth, 1996. "Using Leading Indicators to Forecast US Home Sales in a Bayesian VAR Framework," Working papers 1996-08, University of Connecticut, Department of Economics.
    6. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    7. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    8. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    9. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    10. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
    11. Rangan Gupta & Stephen Miller, 2012. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," The Journal of Real Estate Finance and Economics, Springer, vol. 44(3), pages 339-361, April.
    12. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    13. Ribeiro Ramos, Francisco Fernando, 2003. "Forecasts of market shares from VAR and BVAR models: a comparison of their accuracy," International Journal of Forecasting, Elsevier, vol. 19(1), pages 95-110.
    14. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    15. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    16. Don H. Kim, 2008. "Challenges in macro-finance modeling," Finance and Economics Discussion Series 2008-06, Board of Governors of the Federal Reserve System (U.S.).
    17. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    18. Francisco F. R. Ramos, 1996. "VAR Priors: Success or lack of a decent macroeconomic theory?," Econometrics 9601002, University Library of Munich, Germany.
    19. Hossein Hassani & Zara Ghodsi & Rangan Gupta & Mawuli Segnon, 2017. "Forecasting Home Sales in the Four Census Regions and the Aggregate US Economy Using Singular Spectrum Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 83-97, January.
    20. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:1995-05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McConnel (email available below). General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.