IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1339.html
   My bibliography  Save this paper

The Maximum Number of Parameters for the Hausman Test When the Estimators are from Different Sets of Equations

Author

Listed:
  • Kazumitsu Nawata

    (Graduate School of Engineering, University of Tokyo)

  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute, The Netherlands, Department of Quantitative Economics, Complutense University of Madrid, and Institute of Economic Research, Kyoto University.)

Abstract

Hausman (1978) developed a widely-used model specification test that has passed the test of time. The test is based on two estimators, one being consistent under the null hypothesis but inconsistent under the alternative, and the other being consistent under both the null and alternative hypotheses. In this paper, we show that the asymptotic variance of the difference of the two estimators can be a singular matrix. Moreover, in calculating the Hausman test there is a maximum number of parameters which is the number of different equations that are used to obtain the two estimators. Three illustrative examples are used, namely an exogeneity test for the linear regression model, a test for the Box-Cox transformation, and a test for sample selection bias.

Suggested Citation

  • Kazumitsu Nawata & Michael McAleer, 2013. "The Maximum Number of Parameters for the Hausman Test When the Estimators are from Different Sets of Equations," Documentos de Trabajo del ICAE 2013-39, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1339
    Note: This paper was supported by a Grant-in-Aid for Scientific Research “Analyses of the Large Scale Medical Survey Data and the Policy Evaluations in Japan (Grant Number: 24330067)” of the Japan Society of Science for the first author, and Australian Research Council and the National Science Council, Taiwan for the second author.
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/23988/1/1339.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    2. Smith, Richard, 1983. "On the classical nature of the Wu-Hausman statistics for the independence of stochastic regressors and disturbance," Economics Letters, Elsevier, vol. 11(4), pages 357-364.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    5. Kazumitsu Nawata, 2013. "A new estimator of the Box-Cox transformation model using moment conditions," Economics Bulletin, AccessEcon, vol. 33(3), pages 2287-2297.
    6. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, January.
    7. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    8. Holly, Alberto, 1982. "A Remark on Hausman's Specification Test," Econometrica, Econometric Society, vol. 50(3), pages 749-759, May.
    9. Hausman, Jerry A. & Taylor, William E., 1981. "A generalized specification test," Economics Letters, Elsevier, vol. 8(3), pages 239-245.
    10. Smith, Richard J, 1984. "A Note on Likelihood Ratio Tests for the Independence between a Subset of Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 263-269, February.
    11. Smith, Richard J., 1985. "Wald tests for the independence of stochastic variables and disturbance of a single linear stochastic simultaneous equation," Economics Letters, Elsevier, vol. 17(1-2), pages 87-90.
    12. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazumitsu Nawata, 2015. "Robust estimation based on the third-moment restriction of the error terms for the Box-Cox transformation model: An estimator consistent under heteroscedasticity," Economics Bulletin, AccessEcon, vol. 35(2), pages 1056-1064.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    2. Doko Tchatoka, Firmin, 2012. "Specification tests with weak and invalid instruments," Working Papers 15063, University of Tasmania, Tasmanian School of Business and Economics, revised 26 Jun 2012.
    3. Kiviet, Jan F. & Pleus, Milan, 2017. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Econometrics and Statistics, Elsevier, vol. 2(C), pages 1-21.
    4. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    5. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    6. Firmin Doko Tchatoka & Jean-Marie Dufour, 2016. "Exogeneity tests, weak identification, incomplete models and non-Gaussian distributions: Invariance and finite-sample distributional theory," School of Economics and Public Policy Working Papers 2016-01, University of Adelaide, School of Economics and Public Policy.
    7. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    8. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    9. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    10. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    11. Nooraisah Katmon & Omar Al Farooque, 2017. "Exploring the Impact of Internal Corporate Governance on the Relation Between Disclosure Quality and Earnings Management in the UK Listed Companies," Journal of Business Ethics, Springer, vol. 142(2), pages 345-367, May.
    12. Verbeek, Marno & Nijman, Theo, 1992. "Testing for Selectivity Bias in Panel Data Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 681-703, August.
    13. Katrin Hussinger, 2008. "R&D and subsidies at the firm level: an application of parametric and semiparametric two-step selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 729-747.
    14. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    15. Catherine Dehon & Marjorie Gassner & Vincenzo Verardi, 2005. "Robustness or Efficiency, A Test to Solve the Dilemma," Econometrics 0508011, University Library of Munich, Germany.
    16. Honore, Bo E. & Kyriazidou, Ekaterini & Udry, Christopher, 1997. "Estimation of Type 3 Tobit models using symmetric trimming and pairwise comparisons," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 107-128.
    17. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    18. White, Halbert & Hong, Yongmiao, 1999. "M-Testing Using Finite and Infinite Dimensional Parameter Estimators," University of California at San Diego, Economics Working Paper Series qt9qz123ng, Department of Economics, UC San Diego.
    19. Guigonan S. Adjognon & Daan van Soest & Jonas Guthoff, 2021. "Reducing Hunger with Payments for Environmental Services (PES): Experimental Evidence from Burkina Faso," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 831-857, May.
    20. Donald, Stephen G., 1995. "Two-step estimation of heteroskedastic sample selection models," Journal of Econometrics, Elsevier, vol. 65(2), pages 347-380, February.

    More about this item

    Keywords

    : Hausman test; specification test; number of parameters; instrumental variable (IV) model; Box-Cox model; Sample selection bias.;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.