IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125578.html
   My bibliography  Save this paper

Green Energy Pricing for Digital Europe

Author

Listed:
  • Crampes, Claude
  • Lefouili, Yassine

Abstract

This paper investigates the trade-offs associated with the digitalization of the energy sector. Arguing that digitalization has both bright and dark sides, we study the extent to which it can help make energy systems efficient and sustainable. We first discuss how digitalization affects the responsiveness of demand, and explore its implications for spot pricing, load shedding, and priority service. In particular, we highlight the conditions under which digital technologies that allow demand to be more responsive to supply are likely to be used. We then turn to the way digitalization can contribute to the decarbonization of the energy sector, and discuss the promises and limitations of artificial intelligence in this area. Finally, we contend that policymakers should pay special attention to the privacy concerns raised by the digitalization of the energy sector and the cyberattacks that it enables.

Suggested Citation

  • Crampes, Claude & Lefouili, Yassine, 2021. "Green Energy Pricing for Digital Europe," TSE Working Papers 21-1209, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:125578
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1209.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chao, Hung-po & Wilson, Robert, 1987. "Priority Service: Pricing, Investment, and Market Organization," American Economic Review, American Economic Association, vol. 77(5), pages 899-916, December.
    2. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Stéphane Auray & Vincenzo Caponi & Benoît Ravel, 2019. "Price Elasticity of Electricity Demand in France," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 513, pages 91-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    2. Yang, Yuting, 2020. "Electricity Interconnection with Intermittent Renewables," TSE Working Papers 20-1075, Toulouse School of Economics (TSE).
    3. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    4. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    5. Peter Cramton & Axel Ockenfels, 2012. "Economics and Design of Capacity Markets for the Power Sector," Papers of Peter Cramton 12cocap, University of Maryland, Department of Economics - Peter Cramton, revised 2012.
    6. Frédéric Cherbonnier & Christian Gollier, 2022. "Risk-adjusted Social Discount Rates," Post-Print hal-04012977, HAL.
    7. Correia-da-Silva, João, 2021. "Optimal priority pricing by a durable goods monopolist," Games and Economic Behavior, Elsevier, vol. 129(C), pages 310-328.
    8. Bernard, Jean-Thomas & Roland, Michel, 2000. "Load management programs, cross-subsidies and transaction costs: the case of self-rationing," Resource and Energy Economics, Elsevier, vol. 22(2), pages 161-188, May.
    9. Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
    10. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    11. Nor Salwati Othman & Nurul Hezlin Mohamed Hariri, 2021. "Estimating the Causality and Elasticities of Residential Electricity Consumption for Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 335-346.
    12. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    13. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    14. Heidrun C. Hoppe & Benny Moldovanu & Aner Sela, 2009. "The Theory of Assortative Matching Based on Costly Signals," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 253-281.
    15. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    16. Beard, T. Randolph & Sweeney, George H. & Gropper, Daniel M., 1995. "Subsidy free pricing of interruptible service contracts," Energy Economics, Elsevier, vol. 17(1), pages 53-58, January.
    17. Evens Salies & Lynne Kiesling & Michael Giberson, 2007. "L'électricité est-elle un bien public ?," Revue de l'OFCE, Presses de Sciences-Po, vol. 101(2), pages 399-420.
    18. Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.
    19. Horowitz, I. & Woo, C.K., 2006. "Designing Pareto-superior demand-response rate options," Energy, Elsevier, vol. 31(6), pages 1040-1051.
    20. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.

    More about this item

    Keywords

    Electricity; dynamic pricing; digitalisation; artificial Intelligence;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.