IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp14.html
   My bibliography  Save this paper

Optimal Dividend Control in Presence of Downside Risk

Author

Listed:
  • Luis H. R. Alvarez

    () (Department of Economics, Turku School of Economics)

  • Teppo A. Rakkolainen

    () (Department of Economics, Turku School of Economics)

Abstract

We analyze the determination of a value maximizing dividend policy for a broad class of cash flow processes modelled as spectrally negative jump diffusions. We extend previous results based on continuous diffusion models and characterize the value of the optimal dividend policy explicitly. Utilizing this result, we also characterize explicitly the values as well as the optimal dividend thresholds for a class of associated optimal stopping and sequential impulse control problems. Our results indicate that both the value as well as the marginal value of the optimal policy are increasing functions of policy flexibility in the discontinuous setting as well.

Suggested Citation

  • Luis H. R. Alvarez & Teppo A. Rakkolainen, 2007. "Optimal Dividend Control in Presence of Downside Risk," Discussion Papers 14, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp14
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/ACE14%20valmis.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bar-Ilan, Avner & Perry, David & Stadje, Wolfgang, 2004. "A generalized impulse control model of cash management," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1013-1033, March.
    2. repec:spr:compst:v:54:y:2001:i:2:p:315-337 is not listed on IDEAS
    3. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2006. "A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions," Discussion Papers 9, Aboa Centre for Economics.
    4. Luis Alvarez, 1996. "Demand uncertainty and the value of supply opportunities," Journal of Economics, Springer, vol. 64(2), pages 163-175, June.
    5. Erhan Bayraktar & Masahiko Egami, 2008. "Optimizing venture capital investments in a jump diffusion model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(1), pages 21-42, February.
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Luis Alvarez & Jukka Virtanen, 2006. "A class of solvable stochastic dividend optimization problems: on the general impact of flexibility on valuation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 373-398, June.
    8. repec:spr:compst:v:51:y:2000:i:1:p:1-42 is not listed on IDEAS
    9. Perry, David & Stadje, Wolfgang, 2000. "Risk analysis for a stochastic cash management model with two types of customers," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 25-36, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    2. Loeffen, R.L., 2009. "An optimal dividends problem with transaction costs for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 41-48, August.
    3. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.

    More about this item

    Keywords

    dividend optimization; downside risk; impulse control; jump diffusion; optimal stopping; singular stochastic control;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Aleksandra Maslowska). General contact details of provider: http://edirc.repec.org/data/tukkkfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.