IDEAS home Printed from https://ideas.repec.org/p/tkk/dpaper/dp9.html
   My bibliography  Save this paper

A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions

Author

Listed:
  • Luis H. R. Alvarez

    () (Department of Economics, Turku School of Economics)

  • Teppo A. Rakkolainen

    () (Department of Economics, Turku School of Economics)

Abstract

We consider the optimal stopping of a class of spectrally negative jump diffusions. We state a set of conditions under which the value is shown to have a representation in terms of an ordinary nonlinear programming problem. We establish a connection between the considered problem and a stopping problem of an associated continuous diffusion process and demonstrate how this connection may be applied for characterizing the stopping policy and its value. We also establish a set of typically satisfied conditions under which increased volatility as well as higher jump-intensity decelerates rational exercise by increasing the value and expanding the continuation region.

Suggested Citation

  • Luis H. R. Alvarez & Teppo A. Rakkolainen, 2006. "A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions," Discussion Papers 9, Aboa Centre for Economics.
  • Handle: RePEc:tkk:dpaper:dp9
    as

    Download full text from publisher

    File URL: http://www.ace-economics.fi/kuvat/ACE9%20Alvarez%20Rakkolainen.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Svetlana Boyarchenko & Sergei Levendorskii, 2005. "American options: the EPV pricing model," Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
    2. repec:spr:compst:v:54:y:2001:i:2:p:315-337 is not listed on IDEAS
    3. Luis Alvarez, 1996. "Demand uncertainty and the value of supply opportunities," Journal of Economics, Springer, vol. 64(2), pages 163-175, June.
    4. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    5. Luis H. R. Alvarez, 2001. "Reward functionals, salvage values, and optimal stopping," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(2), pages 315-337, December.
    6. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, Oxford University Press, vol. 98(1), pages 85-106.
    7. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    8. Svetlana Boyarchenko, 2004. "Irreversible Decisions and Record-Setting News Principles," American Economic Review, American Economic Association, vol. 94(3), pages 557-568, June.
    9. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    10. Luis Alvarez & Teppo Rakkolainen, 2010. "Investment timing in presence of downside risk: a certainty equivalent characterization," Annals of Finance, Springer, vol. 6(3), pages 317-333, July.
    11. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masahiko Egami & Mingxin Xu, 2009. "A continuous-time search model with job switch and jumps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 241-267, October.
    2. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2007. "Optimal Dividend Control in Presence of Downside Risk," Discussion Papers 14, Aboa Centre for Economics.
    3. repec:spr:compst:v:70:y:2009:i:2:p:241-267 is not listed on IDEAS

    More about this item

    Keywords

    jump diffusions; optimal stopping; nonlinear programming; perpetual American options;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tkk:dpaper:dp9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Aleksandra Maslowska). General contact details of provider: http://edirc.repec.org/data/tukkkfi.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.