IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v70y2009i2p241-267.html
   My bibliography  Save this article

A continuous-time search model with job switch and jumps

Author

Listed:
  • Masahiko Egami
  • Mingxin Xu

Abstract

We study a new search problem in continuous time. In the traditional approach, the basic formulation is to maximize the expected (discounted) return obtained by taking a job, net of search cost incurred until the job is taken. Implicitly assumed in the traditional modeling is that the agent has no job at all during the search period or her decision on a new job is independent of the job situation she is currently engaged in. In contrast, we incorporate the fact that the agent has a job currently and starts searching a new job. Hence we can handle more realistic situation of the search problem. We provide optimal decision rules as to both quitting the current job and taking a new job as well as explicit solutions and proofs of optimality. Further, we extend to a situation where the agent’s current job satisfaction may be affected by sudden downward jumps (e.g., de-motivating events), where we also find an explicit solution; it is rather a rare case that one finds explicit solutions in control problems using a jump diffusion. Copyright Springer-Verlag 2009

Suggested Citation

  • Masahiko Egami & Mingxin Xu, 2009. "A continuous-time search model with job switch and jumps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 241-267, October.
  • Handle: RePEc:spr:mathme:v:70:y:2009:i:2:p:241-267
    DOI: 10.1007/s00186-008-0240-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0240-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0240-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuckerman, Dror, 1984. "On preserving the reservation wage property in a continuous job search model," Journal of Economic Theory, Elsevier, vol. 34(1), pages 175-179, October.
    2. Lippman, Steven A. & McCall, John J., 1976. "Job search in a dynamic economy," Journal of Economic Theory, Elsevier, vol. 12(3), pages 365-390, June.
    3. Luis H. R. Alvarez & Teppo A. Rakkolainen, 2006. "A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions," Discussion Papers 9, Aboa Centre for Economics.
    4. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Bayraktar & Masahiko Egami, 2008. "An Analysis of Monotone Follower Problems for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 336-350, May.
    2. Tan Wang & Tony S. Wirjanto, 2016. "Risk Aversion, Uncertainty, Unemployment Insurance Benefit and Duration of "Wait" Unemployment," Annals of Economics and Finance, Society for AEF, vol. 17(1), pages 1-34, May.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    4. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    5. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    6. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    7. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    8. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    9. S. C. P. Yam & S. P. Yung & W. Zhou, 2014. "Game Call Options Revisited," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 173-206, January.
    10. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    11. Luis Alvarez & Teppo Rakkolainen, 2010. "Investment timing in presence of downside risk: a certainty equivalent characterization," Annals of Finance, Springer, vol. 6(3), pages 317-333, July.
    12. Marcu, Emanuel & Noussair, Charles, 2018. "Sequential Search with a Price Freeze Option - Theory and Experimental Evidence," Other publications TiSEM dacf4815-c001-44c3-bda3-f, Tilburg University, School of Economics and Management.
    13. Erhan Bayraktar & Masahiko Egami, 2010. "A unified treatment of dividend payment problems under fixed cost and implementation delays," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 325-351, April.
    14. Hobson, David, 2021. "The shape of the value function under Poisson optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 229-246.
    15. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2019. "A Solvable Two-Dimensional Degenerate Singular Stochastic Control Problem with Nonconvex Costs," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 512-531, May.
    16. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    17. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
    18. Liu, Zhenya & Lu, Shanglin & Wang, Shixuan, 2021. "Asymmetry, tail risk and time series momentum," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. Alex S. L. Tse & Harry Zheng, 2023. "Speculative trading, prospect theory and transaction costs," Finance and Stochastics, Springer, vol. 27(1), pages 49-96, January.
    20. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:70:y:2009:i:2:p:241-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.