IDEAS home Printed from
   My bibliography  Save this paper

Streamlining Time-varying VAR with a Factor Structure in the Parameters



I introduce a factor structure on the parameters of a Bayesian TVP-VAR to reduce the dimension of the model's state space. To further limit the scope of over-fitting the estimation of the factor loadings uses a new generation of shrinkage priors. A Monte Carlo study illustrates the ability of the proposed sampler to well distinguish between time-varying and constant parameters. In an application with Swiss data the model proves useful to capture changes in the economy's dynamics due to the lower bound on nominal interest rates.

Suggested Citation

  • Simon Beyeler, 2019. "Streamlining Time-varying VAR with a Factor Structure in the Parameters," Working Papers 19.03, Swiss National Bank, Study Center Gerzensee.
  • Handle: RePEc:szg:worpap:1903

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: None

    References listed on IDEAS

    1. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    2. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    3. repec:cup:cbooks:9781107199309 is not listed on IDEAS
    4. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    5. Eric Eisenstat & Joshua C.C. Chan & Rodney W. Strachan, 2018. "Reducing Dimensions in a Large TVP-VAR," Working Paper Series 43, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    6. Florian Huber & Martin Feldkircher, 2019. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
    7. Amir-Ahmadi, Pooyan & Matthes, Christian & Wang, Mu-Chun, 2016. "Choosing Prior Hyperparameters," Working Paper 16-9, Federal Reserve Bank of Richmond.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:szg:worpap:1903. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (library). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.