IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2018-07.html
   My bibliography  Save this paper

Inference for Iterated GMM Under Misspecification and Clustering

Author

Listed:
  • Bruce E. Hansen

    (Department of Economics, University of Wisconsin-Madison)

  • Seojeong Jay Lee

    (School of Economics, UNSW Business School, UNSW Sydney)

Abstract

This paper develops a new distribution theory and inference methods for over-identified Generalized Method of Moments (GMM) estimation focusing on the iterated GMM estimator, allowing for moment misspecification, and for clustered dependence with heterogeneous and growing cluster sizes. This paper is the first to provide a rigorous theory for the iterated GMM estimator. We provide conditions for its existence by demonstrating that the iteration sequence is a contraction mapping. Our asymptotic theory allows the moments to be possibly misspecified, which is a general feature of approximate over-identified models. This form of moment misspecification causes bias in conventional standard error estimation. Our results show how to correct for this standard error bias. Our paper is also the first to provide a rigorous distribution theory for the GMM estimator under cluster dependence. Our distribution theory is asymptotic, and allows for heterogeneous and growing cluster sizes. Our results cover standard smooth moment condition models, including dynamic panels, which is a common application for GMM with cluster dependence. Our simulation results show that conventional heteroskedasticity-robust standard errors are highly biased under moment misspecification, severely understating estimation uncertainty, and resulting in severely over-sized hypothesis tests. In contrast, our misspecification-robust standard errors are approximately unbiased and properly sized under both correct specification and misspecification. We illustrate the method by extending the empirical work reported in Acemoglu, Johnson, Robinson, and Yared (2008, American Economic Review) and Cervellati, Jung, Sunde, and Vischer (2014, American Economic Review). Our results reveal an enormous effect of iterating the GMM estimator, demonstrating the arbitrari- ness of using one-step and two-step estimators. Our results also show a large effect of using misspecification robust standard errors instead of the Arellano-Bond standard errors. Our results support Acemoglu, Johnson, Robinson, and Yared’s conclusion of an insignificant effect of income on democracy, but reveal that the heterogeneous effects documented by Cervellati, Jung, Sunde, and Vischer are less statistically significant than previously claimed.

Suggested Citation

  • Bruce E. Hansen & Seojeong Jay Lee, 2018. "Inference for Iterated GMM Under Misspecification and Clustering," Discussion Papers 2018-07, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2018-07
    as

    Download full text from publisher

    File URL: http://research.economics.unsw.edu.au/RePEc/papers/2018-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    5. Xun Lu & Liangjun Su, 2017. "Determining the number of groups in latent panel structures with an application to income and democracy," Quantitative Economics, Econometric Society, vol. 8(3), pages 729-760, November.
    6. Daron Acemoglu & Simon Johnson & James A. Robinson & Pierre Yared, 2008. "Income and Democracy," American Economic Review, American Economic Association, vol. 98(3), pages 808-842, June.
    7. Hall, Alastair R. & Inoue, Atsushi, 2003. "The large sample behaviour of the generalized method of moments estimator in misspecified models," Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    10. Acemoglu, Daron & Johnson, Simon & Robinson, James A. & Yared, Pierre, 2009. "Reevaluating the modernization hypothesis," Journal of Monetary Economics, Elsevier, vol. 56(8), pages 1043-1058, November.
    11. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    12. Seojeong Lee, 2018. "A Consistent Variance Estimator for 2SLS When Instruments Identify Different LATEs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 400-410, July.
    13. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    14. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    15. Alastair R. Hall, 2000. "Covariance Matrix Estimation and the Power of the Overidentifying Restrictions Test," Econometrica, Econometric Society, vol. 68(6), pages 1517-1528, November.
    16. Dominitz, Jeff & Sherman, Robert P., 2005. "Some Convergence Theory For Iterative Estimation Procedures With An Application To Semiparametric Estimation," Econometric Theory, Cambridge University Press, vol. 21(4), pages 838-863, August.
    17. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    18. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagchi, Sutirtha & Curran, Michael & Fagerstrom, Matthew J., 2019. "Monetary growth and wealth inequality," Economics Letters, Elsevier, vol. 182(C), pages 23-25.
    2. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    3. C. Luke Watson & Oren Ziv, 2021. "Is the Rent Too High? Land Ownership and Monopoly Power," CESifo Working Paper Series 8864, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce E. Hansen & Seojeong Lee, 2021. "Inference for Iterated GMM Under Misspecification," Econometrica, Econometric Society, vol. 89(3), pages 1419-1447, May.
    2. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    3. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    4. Heid, Benedikt & Langer, Julian & Larch, Mario, 2012. "Income and democracy: Evidence from system GMM estimates," Economics Letters, Elsevier, vol. 116(2), pages 166-169.
    5. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
    6. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    7. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    8. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    9. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    10. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    11. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    12. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    13. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    14. Deodat E. Adenutsi & Meshach J. Aziakpono & Matthew K. Ocran, 2011. "The Changing Impact Of Macroeconomic Environment On Remittance Inflows In Sub-Saharan Africa," Journal of Academic Research in Economics, Spiru Haret University, Faculty of Accounting and Financial Management Constanta, vol. 3(2 (July)), pages 136-167.
    15. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    16. Vusal Musayev, 2016. "Externalities in Military Spending and Growth: The Role of Natural Resources as a Channel through Conflict," Defence and Peace Economics, Taylor & Francis Journals, vol. 27(3), pages 378-391, June.
    17. Campante, Filipe R. & Chor, Davin, 2014. "“The people want the fall of the regime”: Schooling, political protest, and the economy," Journal of Comparative Economics, Elsevier, vol. 42(3), pages 495-517.
    18. Jooste, Charl & Liu, Guangling (Dave) & Naraidoo, Ruthira, 2013. "Analysing the effects of fiscal policy shocks in the South African economy," Economic Modelling, Elsevier, vol. 32(C), pages 215-224.
    19. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    20. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    21. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.

    More about this item

    Keywords

    generalized method of moments; misspecification; clustering; robust inference; contraction mapping;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2018-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.