IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2007-20.html
   My bibliography  Save this paper

Generic Finiteness of Outcome Distributions for Two Person Game Forms with Three Outcomes

Author

Listed:
  • Carlos Pimienta

    () (School of Economics, The University of New South Wales)

Abstract

A two-person game form is given by nonempty finite sets S1, S2 of pure strategies, a nonempty set [Omega] of outcomes, and a function [theta]:S1xS2-->[Delta]([Omega]), where [Delta]([Omega]) is the set of probability measures on [Omega]. We prove that if the set of outcomes contains just three elements, generically, there are finitely many distributions on [Omega] induced by Nash equilibria.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carlos Pimienta, 2007. "Generic Finiteness of Outcome Distributions for Two Person Game Forms with Three Outcomes," Discussion Papers 2007-20, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2007-20
    as

    Download full text from publisher

    File URL: http://wwwdocs.fce.unsw.edu.au/economics/Research/WorkingPapers/2007_20.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pimienta, Carlos, 2009. "Generic determinacy of Nash equilibrium in network-formation games," Games and Economic Behavior, Elsevier, vol. 66(2), pages 920-927, July.
    2. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    3. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    4. Kukushkin, Nikolai S. & Litan, Cristian M. & Marhuenda, Francisco, 2008. "On the generic finiteness of equilibrium outcome distributions in bimatrix game forms," Journal of Economic Theory, Elsevier, vol. 139(1), pages 392-395, March.
    5. De Sinopoli, Francesco, 2001. "On the Generic Finiteness of Equilibrium Outcomes in Plurality Games," Games and Economic Behavior, Elsevier, vol. 34(2), pages 270-286, February.
    6. Blume, Lawrence E & Zame, William R, 1994. "The Algebraic Geometry of Perfect and Sequential Equilibrium," Econometrica, Econometric Society, vol. 62(4), pages 783-794, July.
    7. Govindan, Srihari & Wilson, Robert, 2001. "Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes," Econometrica, Econometric Society, vol. 69(3), pages 765-769, May.
    8. Park, In-Uck, 1997. "Generic Finiteness of Equilibrium Outcome Distributions for Sender-Receiver Cheap-Talk Games," Journal of Economic Theory, Elsevier, vol. 76(2), pages 431-448, October.
    9. Marhuenda Hurtado, Francisco & Kukushkin, Nicolai S. & Litan, Cristian M., 2007. "On the generic finiteness of outcome distributions for bimatrix game forms," UC3M Working papers. Economics we073520, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Mas-Colell, Andreu, 2010. "Generic finiteness of equilibrium payoffs for bimatrix games," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 382-383, July.
    11. Govindan, Srihari & McLennan, Andrew, 2001. "On the Generic Finiteness of Equilibrium Outcome Distributions in Game Forms," Econometrica, Econometric Society, vol. 69(2), pages 455-471, March.
    12. Francesco Sinopoli & Giovanna Iannantuoni, 2005. "On the generic strategic stability of Nash equilibria if voting is costly," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(2), pages 477-486, February.
    13. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litan, Cristian & Marhuenda, Francisco & Sudhölter, Peter, 2015. "Determinacy of equilibrium in outcome game forms," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 28-32.
    2. Kukushkin, Nikolai S. & Litan, Cristian M. & Marhuenda, Francisco, 2008. "On the generic finiteness of equilibrium outcome distributions in bimatrix game forms," Journal of Economic Theory, Elsevier, vol. 139(1), pages 392-395, March.
    3. Yukio KORIYAMA & Matias Nunez, 2014. "Hybrid Procedures," THEMA Working Papers 2014-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    4. Litan, Cristian M. & Marhuenda, Francisco, 2012. "Determinacy of equilibrium outcome distributions for zero sum and common utility games," Economics Letters, Elsevier, vol. 115(2), pages 152-154.
    5. Litan, Cristian & Marhuenda, Francisco & Sudhölter, Peter, 2017. "Generic Finiteness of Equilibrium Distributions for Bimatrix Outcome Game Forms," Discussion Papers of Business and Economics 7/2017, University of Southern Denmark, Department of Business and Economics.

    More about this item

    Keywords

    Generic finiteness; game forms; Nash equilibrium;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2007-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hongyi Li) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/senswau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.