IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/245.html
   My bibliography  Save this paper

Optimal Oil Exploration under Climate Treaties

Author

Listed:

Abstract

In this paper we focus on how an international climate treaty will influence the exploration of oil in Non-OPEC countries. We present a numerical intertemporal global equilibrium model for the fossil fuel markets. The international oil market is modelled with a cartel (OPEC) and a competitive fringe on the supply side, following a Nash-Cournot approach. An initial resource base for oil is given in the Non-OPEC region. However, the resource base changes over time due to depletion, exploration and discovery. When studying the effects of different climate treaties on oil exploration, two contrasting incentives apply. If an international carbon tax is introduced, the producer price of oil will drop compared to the reference case. This gives an incentive to reduce oil production and exploration. However, the oil price may increase less rapidly over time, which gives an incentive to expedite production, and exploration. In fact, in the case of a rising carbon tax we find the last incentive to be the strongest, which means that an international climate treaty may increase oil exploration in Non-OPEC countries for the coming decades.

Suggested Citation

  • Elin Berg & Snorre Kverndokk & Knut Einar Rosendahl, 1999. "Optimal Oil Exploration under Climate Treaties," Discussion Papers 245, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:245
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp245.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    2. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    3. Arrow, Kenneth J. & Chang, Sheldon, 1982. "Optimal pricing, use, and exploration of uncertain natural resource stocks," Journal of Environmental Economics and Management, Elsevier, vol. 9(1), pages 1-10, March.
    4. Berg, Elin & Kverndokk, Snorre & Rosendahl, Knut Einar, 1998. "Gains from cartelisation in the oil market," Energy Policy, Elsevier, vol. 26(9), pages 725-727, August.
    5. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    6. Rolf Golombek & Jan Braten, 1994. "Incomplete International Climate Agreements: Optimal Carbon Taxes, Market Failures and Welfare Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 141-166.
    7. Swierzbinski, Joseph E & Mendelsohn, Robert, 1989. "Exploration and Exhaustible Resources: The Microfoundations of Aggregate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(1), pages 175-186, February.
    8. Elin Berg & Snorre Kverndokk & Knut Einar Rosendahl, 1996. "Market Power, International CO2 Taxation and Petroleum Wealth," Discussion Papers 170, Statistics Norway, Research Department.
    9. Devarajan, Shantayanan & Fisher, Anthony C, 1982. "Exploration and Scarcity," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1279-1290, December.
    10. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    11. Salant, Stephen W, 1976. "Exhaustible Resources and Industrial Structure: A Nash-Cournot Approach to the World Oil Market," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 1079-1093, October.
    12. Livernois, John R & Uhler, Russell S, 1987. "Extraction Costs and the Economics of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 95(1), pages 195-203, February.
    13. Tahvonen, Olli, 1996. "Trade with Polluting Nonrenewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 1-17, January.
    14. Cairns, Robert D. & Van Quyen, Nguyen, 1998. "Optimal Exploration for and Exploitation of Heterogeneous Mineral Deposits," Journal of Environmental Economics and Management, Elsevier, vol. 35(2), pages 164-189, March.
    15. Wirl Franz, 1994. "Pigouvian Taxation of Energy for Flow and Stock Externalities and Strategic, Noncompetitive Energy Pricing," Journal of Environmental Economics and Management, Elsevier, vol. 26(1), pages 1-18, January.
    16. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    17. Rolf Golombek & Eystein Gjelsvik & Knut Einar Rosendahl, 1995. "Effects of Liberalizing the Natural Gas Markets in Western Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 85-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Snorre Kverndokk & Lars Lindholt & Knut Rosendahl, 2000. "Stabilization of CO 2 concentrations: mitigation scenarios using the Petro model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 195-224, June.

    More about this item

    Keywords

    International Climate Treaties; Exhaustible Resources; Optimal Oil Exploration;

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (L Maasø). General contact details of provider: http://edirc.repec.org/data/ssbgvno.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.