IDEAS home Printed from https://ideas.repec.org/p/sru/ssewps/84.html
   My bibliography  Save this paper

Transforming the energy system - the evolution of the German technological system for solar cells

Author

Listed:

Abstract

To improve our understanding of processes involved in the formation and growth of new technological systems in the energy sector and to identify the associated key challenges for policy makers managing the transformation process, we examine the development of the German technological system for solar cells over the past twenty-five years. We use a 'technological system' approach in which we will trace the evolution of actors, networks and institutions that have a bearing on the generation and diffusion of solar cells. An initial preparatory stage lasted until about 1989 and was mainly characterised by knowledge build up induced by a Federal RDD programme. This was followed by a second stage characterised by political struggle over the regulatory framework and subsequently the beginning of a virtuous circle for solar cells. In the concluding discussion, we emphasise four key features of the evolution of the technological system: (1) the role of a coalition of system builders which successfully influenced the regulatory framework so that markets could be formed: (2) the considerable length of the learning period and the large number of actors which need to learn; (3) the importance of policies which form early markets (not only early niche markets, but beyond those) as only markets may induce firms to enter and learn, and (4) the need to run market formation policies simultaneous to policies which maintain technological variety.

Suggested Citation

  • Staffan Jacobsson & Björn A. Andersson & Lennart Bångens, 2002. "Transforming the energy system - the evolution of the German technological system for solar cells," SPRU Working Paper Series 84, SPRU - Science Policy Research Unit, University of Sussex Business School.
  • Handle: RePEc:sru:ssewps:84
    as

    Download full text from publisher

    File URL: http://www.sussex.ac.uk/Units/spru/publications/imprint/sewps/sewp84/sewp84.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    2. Walker, William, 2000. "Entrapment in large technology systems: institutional commitment and power relations," Research Policy, Elsevier, vol. 29(7-8), pages 833-846, August.
    3. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    4. Young, Allyn A., 1928. "Increasing Returns and Economic Progress," History of Economic Thought Articles, McMaster University Archive for the History of Economic Thought, vol. 38, pages 527-542.
    5. Kazmerski, Lawrence L., 1997. "Photovoltaics: A review of cell and module technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(1-2), pages 71-170, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    2. Kriechbaum, Michael & López Prol, Javier & Posch, Alfred, 2018. "Looking back at the future: Dynamics of collective expectations about photovoltaic technology in Germany & Spain," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 76-87.
    3. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    4. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    5. Huang, Y.H. & Wu, J.H., 2007. "Technological system and renewable energy policy: A case study of solar photovoltaic in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 345-356, February.
    6. Fuchs, Gerhard & Wassermann, Sandra, 2012. "Organising a market: Photovoltaics in Germany," Research Contributions to Organizational Sociology and Innovation Studies, SOI Discussion Papers 2012-01, University of Stuttgart, Institute for Social Sciences, Department of Organizational Sociology and Innovation Studies.
    7. van Alphen, Klaas & Hekkert, Marko P. & van Sark, Wilfried G.J.H.M., 2008. "Renewable energy technologies in the Maldives--Realizing the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 162-180, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    2. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    3. Raven, Rob, 2007. "Co-evolution of waste and electricity regimes: Multi-regime dynamics in the Netherlands (1969-2003)," Energy Policy, Elsevier, vol. 35(4), pages 2197-2208, April.
    4. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    7. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    8. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    9. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    10. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    11. Ismael Rafols & Patrick Zwanenberg & Molly Morgan & Paul Nightingale & Adrian Smith, 2011. "Missing links in nanomaterials governance: bringing industrial dynamics and downstream policies into view," The Journal of Technology Transfer, Springer, vol. 36(6), pages 624-639, December.
    12. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    13. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    14. Simon Wiederhold, 2012. "The Role of Public Procurement in Innovation: Theory and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 43.
    15. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    16. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    17. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    18. Szabo, John & Fabok, Marton, 2020. "Infrastructures and state-building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland," Energy Policy, Elsevier, vol. 138(C).
    19. John Foster & Liam Wagner, 2014. "International experience with transformations in electricity markets: A Short Literature Review," Energy Economics and Management Group Working Papers 2-2014, School of Economics, University of Queensland, Australia.
    20. Hekkert, Marko P. & Harmsen, Robert & de Jong, Arjen, 2007. "Explaining the rapid diffusion of Dutch cogeneration by innovation system functioning," Energy Policy, Elsevier, vol. 35(9), pages 4677-4687, September.

    More about this item

    Keywords

    new technology; growth and formation; solar cells; Germany;
    All these keywords.

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sru:ssewps:84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: University of Sussex Business School Communications Team (email available below). General contact details of provider: https://edirc.repec.org/data/spessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.