IDEAS home Printed from https://ideas.repec.org/p/qss/dqsswp/1911.html
   My bibliography  Save this paper

Is Canada really an education superpower? The impact of exclusions and non-response on results from PISA 2015

Author

Listed:
  • Jake Anders

    (University College London)

  • Silvan Has

    (University College London)

  • John Jerrim

    (University College London)

  • Nikki Shure

    (University College London)

  • Laura Zieger

    (University College London)

Abstract

The purpose of large-scale international assessments is to compare educational achievement across countries. For such cross-national comparisons to be meaningful, the students who take the test must be representative of the whole population of interest. In this paper we consider whether this is the case for Canada, a country widely recognised as high-performing in the Programme for International Student Assessment (PISA). Our analysis illustrates how the PISA 2015 data for Canada suffers from a much higher rate of student exclusions, school non-response and pupil non-response than other high-performing countries such as Finland, Estonia, Japan and South Korea. We discuss how this emerges from differences in how children with Special Educational Needs are defined and rules for their inclusion in the study, variation in school response rates and the comparatively high rates of pupil test absence in Canada. The paper concludes by investigating how Canada’s PISA 2015 rank would change under different assumptions about how the non-participating students would have performed were they to have taken the PISA test.

Suggested Citation

  • Jake Anders & Silvan Has & John Jerrim & Nikki Shure & Laura Zieger, 2019. "Is Canada really an education superpower? The impact of exclusions and non-response on results from PISA 2015," DoQSS Working Papers 19-11, Quantitative Social Science - UCL Social Research Institute, University College London.
  • Handle: RePEc:qss:dqsswp:1911
    as

    Download full text from publisher

    File URL: https://repec.ucl.ac.uk/REPEc/pdf/qsswp1911.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    2. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    3. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    6. Hairu Wang & Yukun Liu & Haiying Zhou, 2025. "Score test for unconfoundedness under a logistic treatment assignment model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 517-533, August.
    7. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    8. Satarupa Bhattacharjee & Bing Li & Xiao Wu & Lingzhou Xue, 2025. "Doubly robust estimation of causal effects for random object outcomes with continuous treatments," Papers 2506.22754, arXiv.org.
    9. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    10. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    11. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    12. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    13. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    14. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    15. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    16. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    17. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    18. Bernard, Tanguy & Dercon, Stefan & Orkin, Kate & Schinaia, Giulio & Seyoum Taffesse, Alemayehu, 2023. "The Future in Mind: Aspirations and Long-term Outcomes in Rural Ethiopia," CEPR Discussion Papers 18492, C.E.P.R. Discussion Papers.
    19. Ashesh Rambachan & Rahul Singh & Davide Viviano, 2024. "Program Evaluation with Remotely Sensed Outcomes," Papers 2411.10959, arXiv.org, revised Oct 2025.
    20. Matilde Cappelletti & Leonardo M. Giuffrida, 2024. "Targeted Bidders in Government Tenders," CESifo Working Paper Series 11142, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qss:dqsswp:1911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr Neus Bover Fonts (email available below). General contact details of provider: https://edirc.repec.org/data/dqioeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.