IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22754.html
   My bibliography  Save this paper

Doubly robust estimation of causal effects for random object outcomes with continuous treatments

Author

Listed:
  • Satarupa Bhattacharjee
  • Bing Li
  • Xiao Wu
  • Lingzhou Xue

Abstract

Causal inference is central to statistics and scientific discovery, enabling researchers to identify cause-and-effect relationships beyond associations. While traditionally studied within Euclidean spaces, contemporary applications increasingly involve complex, non-Euclidean data structures that reside in abstract metric spaces, known as random objects, such as images, shapes, networks, and distributions. This paper introduces a novel framework for causal inference with continuous treatments applied to non-Euclidean data. To address the challenges posed by the lack of linear structures, we leverage Hilbert space embeddings of the metric spaces to facilitate Fr\'echet mean estimation and causal effect mapping. Motivated by a study on the impact of exposure to fine particulate matter on age-at-death distributions across U.S. counties, we propose a nonparametric, doubly-debiased causal inference approach for outcomes as random objects with continuous treatments. Our framework can accommodate moderately high-dimensional vector-valued confounders and derive efficient influence functions for estimation to ensure both robustness and interpretability. We establish rigorous asymptotic properties of the cross-fitted estimators and employ conformal inference techniques for counterfactual outcome prediction. Validated through numerical experiments and applied to real-world environmental data, our framework extends causal inference methodologies to complex data structures, broadening its applicability across scientific disciplines.

Suggested Citation

  • Satarupa Bhattacharjee & Bing Li & Xiao Wu & Lingzhou Xue, 2025. "Doubly robust estimation of causal effects for random object outcomes with continuous treatments," Papers 2506.22754, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22754
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22754
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.