IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202045.html
   My bibliography  Save this paper

The Impact of Disaggregated Oil Shocks on State-Level Consumption of the United States

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Xin Sheng

    (Lord Ashcroft International Business School, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK)

  • Renee van Eyden

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Mark E. Wohar

    (College of Business Administration, University of Nebraska at Omaha, 6708 Pine Street, Omaha, NE 68182, USA)

Abstract

This paper examines the predictive power of oil supply, demand and risk shocks over the realized volatility of intraday oil returns. Utilizing the heterogeneous autoregressive realized volatility (HAR-RV) framework, we show that all shock terms on their own, and particularly financial market driven risk shocks, significantly improve the forecasting performance of the benchmark HAR-RV model, both in- and out-of-sample. Incorporating all three shocks simultaneously in the HAR-RV model yields the largest forecasting gains compared to all other variants of the HAR-RV model, consistently at short-, medium-, and long forecasting horizons. The findings highlight the predictive information captured by disentangled oil price shocks in accurately forecasting oil market volatility, offering a valuable opening for investors and corporations to monitor oil market volatility using information on traded assets at high frequency.

Suggested Citation

  • Rangan Gupta & Xin Sheng & Renee van Eyden & Mark E. Wohar, 2020. "The Impact of Disaggregated Oil Shocks on State-Level Consumption of the United States," Working Papers 202045, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202045
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Case Karl E. & Quigley John M. & Shiller Robert J., 2005. "Comparing Wealth Effects: The Stock Market versus the Housing Market," The B.E. Journal of Macroeconomics, De Gruyter, vol. 5(1), pages 1-34, May.
    2. Case, Karl E. & Quigley, John M. & Shiller, Robert J., 2013. "Wealth Effects Revisited 1975-2012," Critical Finance Review, now publishers, vol. 2(1), pages 101-128, July.
    3. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    4. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    5. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    6. Martin Bodenstein & Luca Guerrieri & Lutz Kilian, 2012. "Monetary Policy Responses to Oil Price Fluctuations," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 60(4), pages 470-504, December.
    7. Yener Coskun & Burak Sencer Atasoy & Giacomo Morri & Esra Alp, 2018. "Wealth Effects on Household Final Consumption: Stock and Housing Market Channels," IJFS, MDPI, vol. 6(2), pages 1-32, June.
    8. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    9. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    10. Ahmed, M. Iqbal & Cassou, Steven P., 2016. "Does consumer confidence affect durable goods spending during bad and good economic times equally?," Journal of Macroeconomics, Elsevier, vol. 50(C), pages 86-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023. "The impacts of oil price volatility on financial stress: Is the COVID-19 period different?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
    2. Gupta, Rangan & Sheng, Xin & van Eyden, Reneé & Wohar, Mark E., 2021. "The impact of disaggregated oil shocks on state-level real housing returns of the United States: The role of oil dependence," Finance Research Letters, Elsevier, vol. 43(C).
    3. Sheng, Xin & Marfatia, Hardik A. & Gupta, Rangan & Ji, Qiang, 2023. "The non-linear response of US state-level tradable and non-tradable inflation to oil shocks: The role of oil-dependence," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
    3. Nooman Rebei & Rashid Sbia, 2021. "Transitory and permanent shocks in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1047-1064, November.
    4. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    5. Zeina Alsalman, 2023. "Oil price shocks and US unemployment: evidence from disentangling the duration of unemployment spells in the labor market," Empirical Economics, Springer, vol. 65(1), pages 479-511, July.
    6. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    7. Kilian, Lutz, 2022. "Facts and fiction in oil market modeling," Energy Economics, Elsevier, vol. 110(C).
    8. Dominik Bertsche, 2019. "The effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approachThe effects of oil supply shocks on the macroeconomy: a Proxy-FAVAR approach," Working Paper Series of the Department of Economics, University of Konstanz 2019-06, Department of Economics, University of Konstanz.
    9. Bruns, Martin, 2021. "Proxy Vector Autoregressions in a Data-rich Environment," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    10. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    11. Kilian, Lutz, 2022. "Understanding the estimation of oil demand and oil supply elasticities," Energy Economics, Elsevier, vol. 107(C).
    12. Khalil, Makram, 2022. "Oil prices, manufacturing goods, and nontradeable services," Journal of International Economics, Elsevier, vol. 134(C).
    13. Diego R. Känzig, 2021. "The Macroeconomic Effects of Oil Supply News: Evidence from OPEC Announcements," American Economic Review, American Economic Association, vol. 111(4), pages 1092-1125, April.
    14. Khalil, Makram, 2020. "Global oil prices and the macroeconomy: The role of tradeable manufacturing versus nontradeable services," Discussion Papers 60/2020, Deutsche Bundesbank.
    15. Alonso-Alvarez, Irma & Di Nino, Virginia & Venditti, Fabrizio, 2022. "Strategic interactions and price dynamics in the global oil market," Energy Economics, Elsevier, vol. 107(C).
    16. Jochen Güntner & Johannes Henler, 2021. "Exogenous Oil supply Shocks in OPEC and Non-OPEC Countries," The Energy Journal, , vol. 42(6), pages 229-246, November.
    17. Robin Braun & Ralf Brüggemann, 2020. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2020-01, Department of Economics, University of Konstanz.
    18. Liu, Dandan & Wang, Qiaoyu & Yan, Karen Xueqing, 2022. "Oil supply news shock and Chinese economy," China Economic Review, Elsevier, vol. 73(C).
    19. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    20. Punzi, Maria Teresa, 2019. "The impact of energy price uncertainty on macroeconomic variables," Energy Policy, Elsevier, vol. 129(C), pages 1306-1319.

    More about this item

    Keywords

    Oil shocks; state-level consumption; oil dependency; local projection model; impulse response functions;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.