IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/98387.html
   My bibliography  Save this paper

Bayesian Model Averaging for Autoregressive Distributed Lag (BMA_ADL) in gretl

Author

Listed:
  • Blazejowski, Marcin
  • Kwiatkowski, Jacek

Abstract

This paper presents a software package that implements Bayesian Model Averaging for Autoregressive Distributed Lag models BMA_ADL ver.~0.9 in gretl. Gretl (the GNU regression, econometrics and time-series library) is an increasingly popular free, open-source software for econometric analysis with an easy-to-use graphical user interface. Bayesian Model Averaging (BMA) incorporates model uncertainty into conclusions about the estimated parameters. It is an efficient tool for discovering the most likely models and variables by obtaining estimates of their posterior characteristics.

Suggested Citation

  • Blazejowski, Marcin & Kwiatkowski, Jacek, 2020. "Bayesian Model Averaging for Autoregressive Distributed Lag (BMA_ADL) in gretl," MPRA Paper 98387, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:98387
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/98387/1/MPRA_paper_98387.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    2. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    3. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    4. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    5. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    6. Ley, Eduardo & Steel, Mark F.J., 2007. "Jointness in Bayesian variable selection with applications to growth regression," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 476-493, September.
    7. Gernot Doppelhofer & Melvyn Weeks, 2009. "Jointness of growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 209-244, March.
    8. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    9. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    10. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Błażejowski & Jacek Kwiatkowski & Paweł Kufel, 2020. "BACE and BMA Variable Selection and Forecasting for UK Money Demand and Inflation with Gretl," Econometrics, MDPI, vol. 8(2), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Błażejowski & Jacek Kwiatkowski & Paweł Kufel, 2020. "BACE and BMA Variable Selection and Forecasting for UK Money Demand and Inflation with Gretl," Econometrics, MDPI, vol. 8(2), pages 1-29, May.
    2. Marcin Błażejowski & Paweł Kufel & Jacek Kwiatkowski, 2020. "Model simplification and variable selection: A replication of the UK inflation model by Hendry (2001)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 645-652, August.
    3. Błażejowski, Marcin & Kwiatkowski, Jacek, 2015. "Bayesian Model Averaging and Jointness Measures for gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i05).
    4. León-González, Roberto & Montolio, Daniel, 2015. "Endogeneity and panel data in growth regressions: A Bayesian model averaging approach," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 23-39.
    5. Roman Horvath & Marek Rusnak & Katerina Smidkova & Jan Zapal, 2014. "The dissent voting behaviour of central bankers: what do we really know?," Applied Economics, Taylor & Francis Journals, vol. 46(4), pages 450-461, February.
    6. Horvath, Roman, 2011. "Research & development and growth: A Bayesian model averaging analysis," Economic Modelling, Elsevier, vol. 28(6), pages 2669-2673.
    7. Horváth, Roman, 2013. "Does trust promote growth?," Journal of Comparative Economics, Elsevier, vol. 41(3), pages 777-788.
    8. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    9. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    10. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    11. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    12. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    13. Coulibaly, Issiaka & Gnimassoun, Blaise, 2013. "Optimality of a monetary union: New evidence from exchange rate misalignments in West Africa," Economic Modelling, Elsevier, vol. 32(C), pages 463-482.
    14. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    15. Marcin Błażejowski & Jacek Kwiatkowski & Jakub Gazda, 2019. "Sources of Economic Growth: A Global Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    16. Eicher, Theo S. & Helfman, Lindy & Lenkoski, Alex, 2012. "Robust FDI determinants: Bayesian Model Averaging in the presence of selection bias," Journal of Macroeconomics, Elsevier, vol. 34(3), pages 637-651.
    17. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2023. "Robust dynamic space–time panel data models using $$\varepsilon $$ ε -contamination: an application to crop yields and climate change," Empirical Economics, Springer, vol. 64(6), pages 2475-2509, June.
    18. Guangjie Li, 2015. "Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects," Econometrics, MDPI, vol. 3(3), pages 1-31, July.
    19. Jesus Crespo Cuaresma & Bettina Grün & Paul Hofmarcher & Stefan Humer & Mathias Moser, 2015. "A Comprehensive Approach to Posterior Jointness Analysis in Bayesian Model Averaging Applications," Department of Economics Working Papers wuwp193, Vienna University of Economics and Business, Department of Economics.
    20. Bruns, Stephan B. & Ioannidis, John P.A., 2020. "Determinants of economic growth: Different time different answer?," Journal of Macroeconomics, Elsevier, vol. 63(C).

    More about this item

    Keywords

    BMA; gretl; model selection;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:98387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.