IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/8621.html
   My bibliography  Save this paper

An Empirical Model of Learning under Ambiguity: The Case of Clinical Trials

Author

Listed:
  • Fernandez, Jose

Abstract

In this paper, I present an empirical model of learning under ambiguity in the context of clinical trials. Patients are concern with learning the treatment effect of the experimental drug, but face the ambiguity of random group assignment. A two dimensional Bayesian model of learning is proposed to capture patients�beliefs on the treatment effect and group assignment. These beliefs are then used to predict patient attrition in clinical trials. Patient learning is demonstrated to be slower when taking into account group ambiguity. In addition, the model corrects for attrition bias in the estimated treatment effect.

Suggested Citation

  • Fernandez, Jose, 2008. "An Empirical Model of Learning under Ambiguity: The Case of Clinical Trials," MPRA Paper 8621, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:8621
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/8621/1/MPRA_paper_8621.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, Econometric Society, vol. 59(1), pages 189-210, January.
    2. Stern, Steven, 1994. "Two Dynamic Discrete Choice Estimation Problems and Simulation Method Solutions," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 695-702, November.
    3. Tat Y. Chan & Barton H. Hamilton, 2006. "Learning, Private Information, and the Economic Evaluation of Randomized Experiments," Journal of Political Economy, University of Chicago Press, vol. 114(6), pages 997-1040, December.
    4. James Heckman & Neil Hohmann & Jeffrey Smith & Michael Khoo, 2000. "Substitution and Dropout Bias in Social Experiments: A Study of an Influential Social Experiment," The Quarterly Journal of Economics, Oxford University Press, vol. 115(2), pages 651-694.
    5. Hausman, Jerry A & Wise, David A, 1979. "Attrition Bias in Experimental and Panel Data: The Gary Income Maintenance Experiment," Econometrica, Econometric Society, vol. 47(2), pages 455-473, March.
    6. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    7. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    2. Mark Egan & Tomas Philipson, 2016. "Health Care Adherence and Personalized Medicine," Working Papers 2016-H01, Becker Friedman Institute for Research In Economics.
    3. Maurer, J. & Harris, K.M., 2015. "Learning to trust flu shots: quasi-experimental evidence on the role of learning in influenza vaccination decisions from the 2009 influenza A/H1N1 (swine flu) pandemic," Health, Econometrics and Data Group (HEDG) Working Papers 15/19, HEDG, c/o Department of Economics, University of York.

    More about this item

    Keywords

    clinical trials; learning; Bayesian; structural model; treatment effect;

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • I1 - Health, Education, and Welfare - - Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8621. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.