IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Information, Learning, and Drug Diffusion: the Case of Cox-2 Inhibitors

  • Pradeep Chintadunta
  • Renna Jiang
  • Ginger Z. Jin
Registered author(s):

    The recent withdrawal of Cox-2 Inhibitors has generated debate on the role of information in drug diffusion: can the market learn the efficacy of new drugs, or does it depend solely on manufacturer advertising and FDA updates? In this study, we use a novel data set to study the diffusion of three Cox-2 Inhibitors ? Celebrex, Vioxx and Bextra ? before the Vioxx withdrawal. Our study has two unique features: first, we observe each patient?s reported satisfaction after consuming a drug. This patient level data set, together with market level data on FDA updates, media coverage, academic articles, and pharmaceutical advertising, allows us to model individual prescription decisions. Second, we distinguish across-patient learning of a drug?s general efficacy from the within-patient learning of the match between a drug and a patient. Our results suggest that prescription choice is sensitive to many sources of information. At the beginning of 2001 and upon Bextra entry in January 2002, doctors held a strong prior belief about the efficacy of Celebrex, Vioxx, and Bextra. As a result, the learning from patient satisfaction is gradual and more concentrated on drug-patient match than on across-patient spillovers. News articles are weakly beneficial for Cox-2 drug sales, but academic articles appear to be detrimental. The impact of FDA updates is close to zero once we control for academic articles, which suggests that FDA updates follow academic articles and therefore deliver little new information to doctors. We find that drug advertising also influences the choice of a patient?s medication. A number of counterfactual experiments are carried out to quantify the influence of information on market shares.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.nber.org/papers/w14252.pdf
    Download Restriction: no

    Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 14252.

    as
    in new window

    Length:
    Date of creation: Aug 2008
    Date of revision:
    Publication status: published as Quantitative Marketing and Economics, December 2009, Volume 7, Number 4, pp. 399-443. This finished journal article is available here
    Handle: RePEc:nbr:nberwo:14252
    Note: IO
    Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
    Phone: 617-868-3900
    Web page: http://www.nber.org
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Ching, Andrew, 2008. "Consumer Learning and Heterogeneity: Dynamics of Demand for Prescription Drugs after Patent Expiration," MPRA Paper 7265, University Library of Munich, Germany.
    2. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, 07.
    3. Ackerberg, Daniel A, 2001. "Empirically Distinguishing Informative and Prestige Effects of Advertising," RAND Journal of Economics, The RAND Corporation, vol. 32(2), pages 316-33, Summer.
    4. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, 08.
    5. Berndt, Ernst R, et al, 1995. "Information, Marketing, and Pricing in the U.S. Antiulcer Drug Market," American Economic Review, American Economic Association, vol. 85(2), pages 100-105, May.
    6. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    7. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-54, July/Aug..
    8. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    9. Coscelli, Andrea & Shum, Matthew, 2004. "An empirical model of learning and patient spillovers in new drug entry," Journal of Econometrics, Elsevier, vol. 122(2), pages 213-246, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14252. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.