IDEAS home Printed from
   My bibliography  Save this paper

Integration, Kointegration und die Langzeitprognose von Kreditausfallzyklen
[Integration, Cointegration and Long-Horizont Forecasting of Credit-Default-Cycles]


  • Wagatha, Matthias


Summary: This paper examines the longterm forecast performance of cointegrated systems relative to forecast performance of comparable VAR that fails to recognize that the system is characterized by cointegration. I use Monte Carlo simulation, real data sets, and multi-step-ahead forecasts to study this question. The cointegrated system I examine is composed of six vectors, five macoreconomic variables, and a credit-default-cycle. The forecasts produced by the vector error correction modell associated with this system are compared with those obtained from a corresponding differenced vector autoregression, as well as a vector autoregression based upon the levels of the data. Alternative measures of forecast accuracy (full-system) are discussed. My findings suggest that selective forecast performance improvement may be observed by incorporating knowledge of cointegration rank. Furthermore the results indicate that a cointegration modeling of credit risk should be favored against the prevalent level or differenced estimation.

Suggested Citation

  • Wagatha, Matthias, 2007. "Integration, Kointegration und die Langzeitprognose von Kreditausfallzyklen
    [Integration, Cointegration and Long-Horizont Forecasting of Credit-Default-Cycles]
    ," MPRA Paper 8572, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:8572

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    2. Karim M. Abadir & Kaddour Hadri & Elias Tzavalis, 1999. "The Influence of VAR Dimensions on Estimator Biases," Econometrica, Econometric Society, vol. 67(1), pages 163-182, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Integration; Cointegration; Forecasting; Credit-default-cycle; Integration; Kointegration; Langzeitprognose; Kreditausfallzyklus;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8572. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.