IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/14739.html
   My bibliography  Save this paper

Forecasting telecommunications data with linear models

Author

Listed:
  • Madden, Gary G
  • Tan, Joachim

Abstract

For telecommunication companies to successfully manage their business, companies rely on mapping future trends and usage patterns. However, the evolution of telecommunications technology and systems in the provision of services renders imperfections in telecommunications data and impinges on a company’s’ ability to properly evaluate and plan their business. ITU Recommendation E.507 provides a selection of econometric models for forecasting these trends. However, no specific guidance is given. This paper evaluates whether simple extrapolation techniques in Recommendation E.507 can generate accurate forecasts. Standard forecast error statistics—mean absolute percentage error, median absolute percentage error and percentage better—show the ARIMA, Holt and Holt-D models provide better forecasts than a random walk and other linear extrapolation methods.

Suggested Citation

  • Madden, Gary G & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," MPRA Paper 14739, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:14739
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/14739/1/MPRA_paper_14739.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grubesic, Tony H. & Murray, Alan T., 2005. "Geographies of imperfection in telecommunication analysis," Telecommunications Policy, Elsevier, vol. 29(1), pages 69-94, February.
    2. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    3. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    4. Makridakis, Spyros & Chatfield, Chris & Hibon, Michele & Lawrence, Michael & Mills, Terence & Ord, Keith & Simmons, LeRoy F., 1993. "The M2-competition: A real-time judgmentally based forecasting study," International Journal of Forecasting, Elsevier, vol. 9(1), pages 5-22, April.
    5. Grambsch, Patricia & Stahel, Werner A., 1990. "Forecasting demand for special telephone services: A case study," International Journal of Forecasting, Elsevier, vol. 6(1), pages 53-64.
    6. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    7. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    8. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mack, Elizabeth A. & Grubesic, Tony H., 2009. "Forecasting broadband provision," Information Economics and Policy, Elsevier, vol. 21(4), pages 297-311, November.
    2. Paris A. Mastorocostas & Constantinos S. Hilas & Dimitris N. Varsamis & Stergiani C. Dova, 2016. "Telecommunications call volume forecasting with a block-diagonal recurrent fuzzy neural network," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(1), pages 15-25, September.
    3. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.

    More about this item

    Keywords

    linear models; ITU Recommendations; telecommunications forecasting;

    JEL classification:

    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14739. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.