IDEAS home Printed from
   My bibliography  Save this paper

Topoloy and economics: the contributions of S. Smale


  • Chichilnisky, Graciela


90 Classical problems in economics are concerned with the solutions of several simultaneous nonlinear optimization problems, one for each consumer or producer, all facing constraints posed by the scarcity of resources. Often their interests conflict, and it is generally impossible to find a single real-valued function representing the interests of the whole of society. To deal with this problem, John Von Neumann introduces the theory of games. He also defined and established the existence of a general economic equilibrium, using topological tools [Von Neumann, 1938]. The work of Stephan Smale follows this tradition. He uses topological tools to deepen and refine the results on existence and other properties of another type of economic equilibrium, the Walrasian equilibrium (Walrus [1874-77]), as formalized by Kenneth J. Arrow and Gerard Debreu [1954], and of non-cooperative equilibrium in game theory as formalized by Nash (1950). This article aim to show that topology is intrinsically necessary for the understanding of the fundamental problem of conflict resolution in economics in its various forms and to situate Smale's contribution within this perspective. The study of conflicts of interests between individuals is what makes economics interesting and mathematically complex. Indeed, we now know that the space of all individual preferences, which define the individual optimization problems, is topologically nontrivial, and that its topological complexity is responsible for the impossibility of treating several individual preferences as if they were one, i.e., aggregating them (Chichilnisky, 1980; Chichilnisky and Heal, 1983). Because it is not possible, in general, to define a single optimization problem, other solutions are sought. This article will develop three solutions, discussed below. Because of the complexity arising from simultaneous optimization problems, economics differs from physics where many of the fundamental relations derive from a single optimization problem. The attempts to find solutions to conflicts among individual interests led to three different theories about how economies are organized and how they behave. These are general equilibrium theory, the theory of games, and social choice theory. Each of these theories leads naturally to mathematical problems of topological nature. Steve Smale has contributed fruitfully to the first two theories: general equilibrium theory and the theory of games. I will argue that his work is connected also with the third approach, social choice theory, by presenting in Section 4 results which link closely, and in unexpected ways, two seemingly different problems: the existence of a general equilibrium and the resolution by social choice of the resource allocation conflict in economics (Chichilnisky, 1991).

Suggested Citation

  • Chichilnisky, Graciela, 1993. "Topoloy and economics: the contributions of S. Smale," MPRA Paper 8485, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:8485

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    2. Smale, S., 1974. "Global analysis and economics IIA : Extension of a theorem of Debreu," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 1-14, March.
    3. Chichilnisky, G., 1992. "Limited Arbitrage is Necessary and Sufficient for the Existence of a Competitive Equilibrium," Papers 93-14, Columbia - Graduate School of Business.
    4. Smale, Stephen, 1976. "Exchange processes with price adjustment," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 211-226, December.
    5. Smale, Stephen, 1976. "Dynamics in General Equilibrium Theory," American Economic Review, American Economic Association, vol. 66(2), pages 288-294, May.
    6. Chichilnisky, Graciela & Heal, Geoffrey, 1983. "Necessary and sufficient conditions for a resolution of the social choice paradox," Journal of Economic Theory, Elsevier, vol. 31(1), pages 68-87, October.
    7. Donald J. Brown & Geoffrey Heal, 1979. "Equity, Efficiency and Increasing Returns," Review of Economic Studies, Oxford University Press, vol. 46(4), pages 571-585.
    8. Smale, S., 1974. "Global analysis and economics IV : Finiteness and stability of equilibria with general consumption sets and production," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 119-127, August.
    9. Smale, S., 1974. "Global analysis and economics v : Pareto theory with constraints," Journal of Mathematical Economics, Elsevier, vol. 1(3), pages 213-221, December.
    10. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    11. Guesnerie, Roger, 1975. "Pareto Optimality in Non-Convex Economies," Econometrica, Econometric Society, vol. 43(1), pages 1-29, January.
    12. Smale, S., 1974. "Global analysis and economics III : Pareto Optima and price equilibria," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 107-117, August.
    13. Chichilnisky, Graciela, 1990. "General equilibrium and social choice with increasing returns," MPRA Paper 8124, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    More about this item


    social choice; game theory; general equilibrium; Stephan Smale; Steve Smale; optimization; optimization problems; topology; topological; preferences; conflict resolution;

    JEL classification:

    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8485. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.