IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/67178.html
   My bibliography  Save this paper

Multiple criteria analysis of policy alternatives to improve energy efficiency in industry in Russia

Author

Listed:
  • Bratanova, Alexandra
  • Robinson, Jacqueline
  • Wagner, Liam
  • Kolegov, Vitaly
  • Nikitchenko, Aleksey
  • Nikitchenko, Anna

Abstract

Russia set an ambitious energy efficiency goal requiring involvement of all sectors of the economy. It requires specific and efficient public policies at all levels of governance. However, decision making in the energy sector in Russia is complex and characterized by multiple policy objectives, conflicting interest groups and a lack of available quantitative data. This study investigates the decision problem of energy efficiency improvements in the industrial sector – a policy proposed by the Moscow City Government. Multiple criteria analysis (MCA) is tendered as an appropriate evaluation tool. As limited studies exist of the application of MCA in Russia, none – for regional energy systems development, this paper provides a novel solution for regional public management. We adapted the MCA PROMETHEE method and undertook an expert survey to evaluate the policy proposal and develop recommendations. This paper describes the adjustment of the evaluation tool to the existing institutional structure and decision making procedures in Russia. It provides a discussion about the participation of stakeholder groups and determination of policy objectives, options and criteria. The analysis leads to a ranking of preferred policy alternatives to assist policy selection and energy efficiency program development. From this, we recommend partial subsidization of the costs of industrial organisations to implement contracts with energy service companies as the best performing option. More importantly we demonstrate the applicability and usefulness of MCA as a decision support tool for Russian public decision-making. Its wide application is expected to improve public management at both regional and federal levels.

Suggested Citation

  • Bratanova, Alexandra & Robinson, Jacqueline & Wagner, Liam & Kolegov, Vitaly & Nikitchenko, Aleksey & Nikitchenko, Anna, 2015. "Multiple criteria analysis of policy alternatives to improve energy efficiency in industry in Russia," MPRA Paper 67178, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:67178
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/67178/1/MPRA_paper_67178.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    2. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    3. Huang, J.P. & Poh, K.L. & Ang, B.W., 1995. "Decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 20(9), pages 843-855.
    4. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    5. P.-A. Haldi & Ch. Frei & L. Beurskens & N. Zhuikova, 2002. "Multicriteria/multi-stakeholders comparative assessment of electricity generation scenarios in the sustainability context: a Swiss case study," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 5(1/2), pages 102-124.
    6. Nathalie Trudeau & Isabel Murray, 2011. "Development of Energy Efficiency Indicators in Russia," IEA Energy Papers 2011/1, OECD Publishing.
    7. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2015. "Dealing with a multiple criteria environmental problem with interaction effects between criteria through an extension of the Electre III method," European Journal of Operational Research, Elsevier, vol. 245(3), pages 837-850.
    8. Diakoulaki, D. & Karangelis, F., 2007. "Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 716-727, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
    3. Wang, Q. & Poh, K.L., 2014. "A survey of integrated decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 77(C), pages 691-702.
    4. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    5. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    6. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    7. Spyridaki, Niki-Artemis & Banaka, Stefania & Flamos, Alexandros, 2016. "Evaluating public policy instruments in the Greek building sector," Energy Policy, Elsevier, vol. 88(C), pages 528-543.
    8. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. J. Cabello & M. Luque & F. Miguel & A. Ruiz & F. Ruiz, 2014. "A multiobjective interactive approach to determine the optimal electricity mix in Andalucía (Spain)," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 109-127, April.
    10. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    11. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    12. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2011. "Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment," Energy Policy, Elsevier, vol. 39(12), pages 7884-7895.
    13. Cowan, Kelly & Daim, Tugrul & Anderson, Tim, 2010. "Exploring the impact of technology development and adoption for sustainable hydroelectric power and storage technologies in the Pacific Northwest United States," Energy, Elsevier, vol. 35(12), pages 4771-4779.
    14. John Michael Humphries Choptiany & Ronald Pelot, 2014. "A Multicriteria Decision Analysis Model and Risk Assessment Framework for Carbon Capture and Storage," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1720-1737, September.
    15. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    16. Delponte, Ilaria & Pittaluga, Ilaria & Schenone, Corrado, 2017. "Monitoring and evaluation of Sustainable Energy Action Plan: Practice and perspective," Energy Policy, Elsevier, vol. 100(C), pages 9-17.
    17. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    18. Mahsa Montajabiha, 2016. "An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning," Group Decision and Negotiation, Springer, vol. 25(2), pages 221-244, March.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    20. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.

    More about this item

    Keywords

    multiple criteria analysis; energy; industry; developing country; Russian regions;
    All these keywords.

    JEL classification:

    • O21 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Planning Models; Planning Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:67178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.