IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57017.html
   My bibliography  Save this paper

Modelização VAR da volatilidade dos preços do ouro e dos índices dos mercados financeiros
[Modelling the volatility of gold prices and financial stock indexes: a VAR approach]

Author

Listed:
  • Antunes, João Marques
  • Fuinhas, José Alberto
  • Marques, António Cardoso

Abstract

The interaction of volatility between the financial markets and gold market is analyzed. The volatility of the price of gold in euros, the price of gold in dollars, the U.S. industrial production índex, the S&p500 index, the VIX índex and the PSI20 index for a time horizon between January 1993 to September 2013 using the model Generalized Autoregressive Conditional Heteroscedasticity. The transmission of volatilities is performed using the Vector Autoregressive model. All variables proved to be endogenous with exception of gold, wich was modeled as an exogenous. Granger causality was detected on variables IPI→S&P500; S&P500→VIX; VIX→PSI20. The analysis of the variance decomposition indicates the prevalence of the explanation of the variables itself. Through these models we proved there is a relationship between the volatility of gold prices and financial markets.

Suggested Citation

  • Antunes, João Marques & Fuinhas, José Alberto & Marques, António Cardoso, 2014. "Modelização VAR da volatilidade dos preços do ouro e dos índices dos mercados financeiros
    [Modelling the volatility of gold prices and financial stock indexes: a VAR approach]
    ," MPRA Paper 57017, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57017
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57017/1/MPRA_paper_57017.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chang, Chia-Lin & Della Chang, Jui-Chuan & Huang, Yi-Wei, 2013. "Dynamic price integration in the global gold market," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 227-235.
    2. Blose, Laurence E., 2010. "Gold prices, cost of carry, and expected inflation," Journal of Economics and Business, Elsevier, vol. 62(1), pages 35-47, January.
    3. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    4. Poterba, James M & Summers, Lawrence H, 1986. "The Persistence of Volatility and Stock Market Fluctuations," American Economic Review, American Economic Association, vol. 76(5), pages 1142-1151, December.
    5. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    6. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    7. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    8. Grossman, Sanford J & Shiller, Robert J, 1981. "The Determinants of the Variability of Stock Market Prices," American Economic Review, American Economic Association, vol. 71(2), pages 222-227, May.
    9. Beckmann, Joscha & Czudaj, Robert, 2013. "Gold as an inflation hedge in a time-varying coefficient framework," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
    10. Baur, Dirk G., 2013. "The autumn effect of gold," Research in International Business and Finance, Elsevier, vol. 27(1), pages 1-11.
    11. Capie, Forrest & Mills, Terence C. & Wood, Geoffrey, 2005. "Gold as a hedge against the dollar," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(4), pages 343-352, October.
    12. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    13. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    14. Granger, Clive W J, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 268-269, July.
    15. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    16. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    17. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    18. Chen, Song Xi & Xu, Zheng, 2014. "On implied volatility for options—Some reasons to smile and more to correct," Journal of Econometrics, Elsevier, vol. 179(1), pages 1-15.
    19. Pukthuanthong, Kuntara & Roll, Richard, 2011. "Gold and the Dollar (and the Euro, Pound, and Yen)," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 2070-2083, August.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Volatility; PSI-20; S&P500; VIX; VAR; GARCH.;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57017. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.