IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/55664.html
   My bibliography  Save this paper

Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks

Author

Listed:
  • Nonejad, Nima

Abstract

Particle Gibbs with ancestor sampling (PG-AS) is a new tool in the family of sequential Monte Carlo methods. We apply PG-AS to the challenging class of unobserved component time series models and demonstrate its flexibility under different circumstances. We also combine discrete structural breaks within the unobserved component model framework. We do this by modeling and forecasting time series characteristics of postwar US inflation using a long memory autoregressive fractionally integrated moving average model with stochastic volatility where we allow for structural breaks in the level, long and short memory parameters contemporaneously with breaks in the level, persistence and the conditional volatility of the volatility of inflation.

Suggested Citation

  • Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:55664
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/55664/1/MPRA_paper_55664.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
    2. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    3. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    4. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    5. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 1057-1084.
    6. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    8. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    9. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
    10. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    13. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    14. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
    2. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    3. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    4. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    5. Jean Pierre Fernández Prada Saucedo & Gabriel Rodríguez, 2020. "Modeling the Volatility of Returns on Commodities: An Application and Empirical Comparison of GARCH and SV Models," Documentos de Trabajo / Working Papers 2020-484, Departamento de Economía - Pontificia Universidad Católica del Perú.
    6. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    7. Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
    8. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    9. Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
    10. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    11. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    12. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    13. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    15. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    16. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    17. Nima Nonejad, 0. "Using the conditional volatility channel to improve the accuracy of aggregate equity return predictions," Empirical Economics, Springer, vol. 0, pages 1-37.
    18. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    19. Nima Nonejad, 2013. "Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach," CREATES Research Papers 2013-26, Department of Economics and Business Economics, Aarhus University.
    20. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.

    More about this item

    Keywords

    Ancestor sampling; Bayes; Particle filtering; Structural breaks;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:55664. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.