IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/41933.html
   My bibliography  Save this paper

Forecasting Chinese inflation and output: A Bayesian vector autoregressive approach

Author

Listed:
  • Huang, Y-F.

Abstract

This study compares several Bayesian vector autoregressive (VAR) models for forecasting price inflation and output growth in China. The results indicate that models with shrinkage and model selection priors, that restrict some VAR coefficients to be close to zero, perform better than models with Normal prior.

Suggested Citation

  • Huang, Y-F., 2012. "Forecasting Chinese inflation and output: A Bayesian vector autoregressive approach," MPRA Paper 41933, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41933
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/41933/1/MPRA_paper_41933.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    2. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    3. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    4. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    5. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    6. Philipp Maier, 2011. "Mixed Frequency Forecasts for Chinese GDP," Staff Working Papers 11-11, Bank of Canada.
    7. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    8. Korobilis, Dimitris, 2008. "Forecasting in vector autoregressions with many predictors," MPRA Paper 21122, University Library of Munich, Germany.
    9. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 99-132.
    10. Mehrotra, Aaron & Sánchez-Fung, José R., 2008. "Forecasting inflation in China," BOFIT Discussion Papers 2/2008, Bank of Finland, Institute for Economies in Transition.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    BVAR; factor model; shrinkage priors;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.