IDEAS home Printed from
   My bibliography  Save this paper

Developing a hybrid comparative optimization model for short-term forecasting: an ‘idle time interval’ roadmap for operational units’ strategic planning


  • Filippou, Miltiades
  • Zervopoulos, Panagiotis


Data drain and data uncertainties for rival units affect the reliability and effectiveness of strategic plans for individual operational units. This study introduces a stochastic, multi-stage, optimization technique for short-term forecasting that intends to assist policy makers in developing ‘flawless’ plans for their organizations during the idle time interval in which official data and balance-sheet reports of the competitors are unavailable. The developed technique, called SDEANN, draws on the ‘deterministic’ data envelopment analysis (DEA) method, ‘regression-type’ artificial neural networks (ANNs), and the contamination of the outputs of the DEA analysis with statistical noise. Statistical noise represents the bias of a ‘deterministic’ sample optimum production frontier when generalization or the uncertainty of the data used becomes the issue. The SDEANN model respects the monotonicity assumption that prevails in microeconomic theory, uses the DEA definition of efficiency, and addresses the dimensionality issues of ANNs with minimum sample size requirements.

Suggested Citation

  • Filippou, Miltiades & Zervopoulos, Panagiotis, 2011. "Developing a hybrid comparative optimization model for short-term forecasting: an ‘idle time interval’ roadmap for operational units’ strategic planning," MPRA Paper 41573, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41573

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    5. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    6. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    More about this item


    forecasting; optimization; efficiency; data envelopment analysis (DEA); artificial neural networks (ANNs); statistical noise;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41573. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.