IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Implementation of Walrasian Allocations in Economies with Infinite Dimension Commodity Spaces

  • Tian, Guoqiang

This paper considers the problem of implementing constrained Walrasian allocations for exchange economies with infinitely many commodities and finitely many agents. The mechanism we provide is a feasible and continuous mechanism whose Nash allocations and strong Nash allocations coincide with constrained Walrasian allocations. This mechanism allows not only preferences and initial endowments but also coalition patterns to be privately observed, and it works not only for three or more agents, but also for two-agent economies, and thus it is a unified mechanism which is irrespective of the number of agents.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/41228/1/MPRA_paper_41228.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 41228.

as
in new window

Length:
Date of creation: 2002
Date of revision:
Handle: RePEc:pra:mprapa:41228
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bezalel Peleg, 1996. "A continuous double implementation of the constrained Walras equilibrium," Review of Economic Design, Springer, vol. 2(1), pages 89-97, December.
  2. Hong, Lu, 1995. "Nash Implementation in Production Economies," Economic Theory, Springer, vol. 5(3), pages 401-17, May.
  3. Yannelis, Nicholas C. & Zame, William R., 1986. "Equilibria in Banach lattices without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 85-110, April.
  4. Nakamura, Shinsuke, 1990. "A feasible Nash implementation of Walrasian equilibria in the two-agent economy," Economics Letters, Elsevier, vol. 34(1), pages 5-9, September.
  5. Hurwicz, L, 1979. "Outcome Functions Yielding Walrasian and Lindahl Allocations at Nash Equilibrium Points," Review of Economic Studies, Wiley Blackwell, vol. 46(2), pages 217-25, April.
  6. Hurwicz, Leonid, 1979. "On allocations attainable through Nash equilibria," Journal of Economic Theory, Elsevier, vol. 21(1), pages 140-165, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41228. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.