IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

GDP Modelling with Factor Model: an Impact of Nested Data on Forecasting Accuracy

  • Bessonovs, Andrejs

Uncertainty associated with an optimal number of macroeconomic variables to be used in factor model is challenging since there is no criteria which states what kind of data should be used, how many variables to employ and does disaggregated data improve factor model’s forecasts. The paper studies an impact of nested macroeconomic data on Latvian GDP forecasting accuracy within factor modelling framework. Nested data means disaggregated data or sub-components of aggregated variables. We employ Stock-Watson factor model in order to estimate factors and to make GDP projections two periods ahead. Root mean square error is employed as the standard tool to measure forecasting accuracy. According to this empirical study we conclude that additional information that contained in disaggregated components of macroeconomic variables could be used to enhance Latvian GDP forecasting accuracy. The efficiency gain improving forecasts is about 0.15-0.20 percentage points of year on year quarterly growth for the forecasting period 1 quarter ahead, but for 2 quarter ahead it’s about half percentage point.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/30211/1/MPRA_paper_30211.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 30211.

as
in new window

Length:
Date of creation: 08 Apr 2011
Date of revision:
Handle: RePEc:pra:mprapa:30211
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Giovanni Caggiano & George Kapetanios & Vincent Labhard, 2011. "Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 736-752, December.
  2. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages C62-85, May.
  3. Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
  4. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  5. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
  6. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  7. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30211. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.