IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/27927.html
   My bibliography  Save this paper

On the relationship of persistence and number of breaks in volatility: new evidence for three CEE countries

Author

Listed:
  • Výrost, Tomáš
  • Baumöhl, Eduard
  • Lyócsa, Štefan

Abstract

In this article, we contribute to the discussion of volatility persistence in the presence of sudden changes. We follow previous research, particularly Wang and Moore (2009), who analysed stock market returns in five Central and Eastern European countries using the Iterated Cumulative Sum of Squares (ICSS) algorithm for detecting multiple breaks and the test (IT) proposed by Inclán and Tiao (1994). We complement this analysis by using the κ1 and κ2 statistic introduced by Sansó et al. (2004), which lead us to the hypothesis that the estimated persistence in volatility depends inversely on the number of breakpoints in volatility. We explored this claim through a simulation study, where by randomizing an increasing number of breakpoints over the sample, we estimated kernel density of the persistence measure. The results confirmed the relationship between persistence and the number of breakpoints. It also showed that the use of break detection algorithms leads to lower persistence estimates, even within the class of models with an equal number of breaks. Therefore, the overall decrease in persistence can be attributed both to the number of breaks and their position, as suggested by the chosen break detection tests.

Suggested Citation

  • Výrost, Tomáš & Baumöhl, Eduard & Lyócsa, Štefan, 2011. "On the relationship of persistence and number of breaks in volatility: new evidence for three CEE countries," MPRA Paper 27927, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:27927
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/27927/1/MPRA_paper_27927.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Poterba, James M & Summers, Lawrence H, 1986. "The Persistence of Volatility and Stock Market Fluctuations," American Economic Review, American Economic Association, vol. 76(5), pages 1142-1151, December.
    2. J. D. Byers & D. A. Peel, 2001. "Volatility persistence in asset markets: long memory in high/low prices," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 253-260.
    3. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Farooq Malik & Bradley Ewing & James Payne, 2005. "Measuring volatility persistence in the presence of sudden changes in the variance of Canadian stock returns," Canadian Journal of Economics, Canadian Economics Association, vol. 38(3), pages 1037-1056, August.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Wang, Ping & Moore, Tomoe, 2009. "Sudden changes in volatility: The case of five central European stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 33-46, February.
    9. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    10. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    11. Konstantin Kholodilin & Vincent Wenxiong Yao, 2006. "Modelling the structural break in volatility," Applied Economics Letters, Taylor & Francis Journals, vol. 13(7), pages 417-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baumöhl, Eduard & Lyócsa, Štefan, 2012. "Constructing weekly returns based on daily stock market data: A puzzle for empirical research?," MPRA Paper 43431, University Library of Munich, Germany.
    2. Lyócsa, Štefan & Baumöhl, Eduard, 2012. "Testing the covariance stationarity of CEE stocks," MPRA Paper 43432, University Library of Munich, Germany.

    More about this item

    Keywords

    volatility persistence; GARCH model; ICSS procedure; CEE stock markets;

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27927. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.