IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/26800.html
   My bibliography  Save this paper

Estimation of the Semiparametric Factor Model: Application to Modelling Time Series of Electricity Spot Prices

Author

Listed:
  • Liebl, Dominik

Abstract

Classical univariate and multivariate time series models have problems to deal with the high variability of hourly electricity spot prices. We propose to model alternatively the daily mean electricity supply functions using a dynamic factor model. And to derive, subsequently, the hourly electricity spot prices by the evaluation of the estimated supply functions at the corresponding hourly values of demand for electricity. Supply functions are price (EUR/MWh) functions, that increase monotonically with demand for electricity (MW). Apart from this new conceptual approach, that allows us to represent the auction design of energy exchanges in a most natural way, our main contribution is an extraordinary simple algorithm to estimate the factor structure of the dynamic factor model. We decompose the time series into a functional spherical component and an univariate scaling component. The elements of the spherical component are all standardized having unit size such that we can robustly estimate the factor structure. This algorithm is much simpler than procedures suggested in the literature. In order to use a parsimonious labeling we will refer to the daily mean supply curves simply as price curves.

Suggested Citation

  • Liebl, Dominik, 2010. "Estimation of the Semiparametric Factor Model: Application to Modelling Time Series of Electricity Spot Prices," MPRA Paper 26800, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:26800
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/26800/1/MPRA_paper_26800.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hum:wpaper:sfb649dp2010-013 is not listed on IDEAS
    2. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    3. Härdle, Wolfgang Karl & Trück, Stefan, 2010. "The dynamics of hourly electricity prices," SFB 649 Discussion Papers 2010-013, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    5. repec:hum:wpaper:sfb649dp2007-023 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebl, Dominik, 2010. "Modeling hourly Electricity Spot Market Prices as non stationary functional times series," MPRA Paper 25017, University Library of Munich, Germany.
    2. repec:hum:wpaper:sfb649dp2012-048 is not listed on IDEAS
    3. Härdle, Wolfgang Karl & Majer, Piotr, 2012. "Yield curve modeling and forecasting using semiparametric factor dynamics," SFB 649 Discussion Papers 2012-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Katarzyna Maciejowska & Rafał Weron, 2015. "Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships," Computational Statistics, Springer, vol. 30(3), pages 805-819, September.
    5. Liebl, Dominik, 2013. "Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective," MPRA Paper 50881, University Library of Munich, Germany.
    6. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    7. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    8. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    9. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2022. "Global sensitivity analysis with aggregated Shapley effects, application to avalanche hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    11. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    12. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    13. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    14. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    15. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    16. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    17. Jiménez Recaredo, Raúl José & Elías Fernández, Antonio, 2017. "Prediction Bands for Functional Data Based on Depth Measures," DES - Working Papers. Statistics and Econometrics. WS 24606, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    19. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    20. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    21. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    22. repec:hum:wpaper:sfb649dp2008-038 is not listed on IDEAS
    23. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.

    More about this item

    Keywords

    Factor Analysis; functional time series data; sparse data; electricity spot market prices; European Electricity Exchange (EEX);
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.