IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Predictive Performance of Asymmetric Normal Mixture GARCH in Risk Management: Evidence from Turkey

  • Cifter, Atilla
  • Ozun, Alper

The purpose of this study is to test predictive performance of Asymmetric Normal Mixture Garch (NMAGARCH) and other Garch models based on Kupiec and Christoffersen tests for Turkish equity market. The empirical results show that the NMAGARCH perform better based on %99 CI out-of-sample forecasting Christoffersen test where Garch with normal and student-t distribution perform better based on %95 Cl out-of-sample forecasting Christoffersen test and Kupiec test. These results show that none of the model including NMAGARCH outperforms other models in all cases as trading position or confidence intervals and these results shows that volatility model should be chosen according to confidence interval and trading positions. Besides, NMAGARCH increases predictive performance for higher confidence internal as Basel requires.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/2489/1/MPRA_paper_2489.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 2489.

as
in new window

Length:
Date of creation: 01 Jan 2007
Date of revision:
Handle: RePEc:pra:mprapa:2489
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  2. Tang, Ta-Lun & Shieh, Shwu-Jane, 2006. "Long memory in stock index futures markets: A value-at-risk approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 437-448.
  3. Marie D. Racine & Lucy F. Ackert, 1998. "Time-varying volatility in Canadian and U.S. stock index and index futures markets: A multivariate analysis," Working Paper 98-14, Federal Reserve Bank of Atlanta.
  4. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-17, July.
  5. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-51, April.
  6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  9. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-59.
  10. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
  11. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  12. S»bastien Laurent and Jean-Philippe Peters, 2001. "G@RCH 2.0: An Ox Package for Estimating and Forecasting Various ARCH Models," Computing in Economics and Finance 2001 123, Society for Computational Economics.
  13. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
  14. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2489. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.