IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/23235.html
   My bibliography  Save this paper

Forecasting The Pricing Kernel of IBNR Claims Development In Property-Casualty Insurance

Author

Listed:
  • Cadogan, Godfrey

Abstract

A new method of forecasting the pricing kernel, i.e., stochastic claim inflation or link ratio function, of incurred but not reported (IBNR) claims (in property casualty insurance) from residuals in a dynamic claims forecast model is presented. We employ a pseudo Kalman filter approach by using claims risk exposure estimates to reconstruct innovations in stochastic claims development. Whereupon we find that the pricing kernel forecast is a product measure of the innovations. We show how these results impact performance measurement including but not limited to risk-adjusted return on capital by and through insurance accounting relationships for adjusted underwriting results; and loss ratio or pure premium calculations. Additionally, we show how, in the context of Wold decomposition, diagnostics from our model can be used to compute signal to noise ratio for, and cross check, unobservable pricing kernels used to forecast claims. Furthermore, we prove that a single risk exposure factor connects seemingly unrelated specifications for loss link ratio, and claims volatility.

Suggested Citation

  • Cadogan, Godfrey, 2010. "Forecasting The Pricing Kernel of IBNR Claims Development In Property-Casualty Insurance," MPRA Paper 23235, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:23235
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/23235/1/MPRA_paper_23235.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    2. Verrall, R. J., 2000. "An investigation into stochastic claims reserving models and the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 91-99, February.
    3. Graham, John R. & Harvey, Campbell R., 2001. "The theory and practice of corporate finance: evidence from the field," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 187-243, May.
    4. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    5. Piet de Jong, 2006. "Forecasting Runoff Triangles," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 28-38.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    8. Taylor, G. C., 1977. "Separation of Inflation and other Effects from the Distribution of Non-Life Insurance Claim Delays," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 219-230, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    3. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    4. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    7. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    9. Schindler, Felix, 2009. "Volatilitätseffekte am US-amerikanischen Häusermarkt," ZEW Discussion Papers 09-048, ZEW - Leibniz Centre for European Economic Research.
    10. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    11. Oberndorfer, Ulrich & Ulbricht, Dirk, 2007. "Lost in Transmission? Stock Market Impacts of the 2006 European Gas Crisis," ZEW Discussion Papers 07-030, ZEW - Leibniz Centre for European Economic Research.
    12. Park, Beum-Jo, 2011. "Asymmetric herding as a source of asymmetric return volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2657-2665, October.
    13. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    14. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    15. Good, Darrel L. & Irwin, Scott H. & Isengildina, Olga, 2006. "The Value of USDA Situation and Outlook Information in Hog and Cattle Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-21, August.
    16. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    17. Jacques Jaussaud & Serge Rey, 2012. "Long‐Run Determinants Of Japanese Exports To China And The United States: A Sectoral Analysis," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 1-28, February.
    18. Jordan French, 2016. "Back to the Future Betas: Empirical Asset Pricing of US and Southeast Asian Markets," IJFS, MDPI, vol. 4(3), pages 1-13, July.
    19. Naji Massad & Jørgen Vitting Andersen, 2019. "Defining an intrinsic "stickiness" parameter of stock price returns," Post-Print halshs-02385901, HAL.
    20. repec:pri:cepsud:186malkiel is not listed on IDEAS
    21. Liang Peng & Rainer Schulz, 2013. "Does the Diversification Potential of Securitized Real Estate Vary Over Time and Should Investors Care?," The Journal of Real Estate Finance and Economics, Springer, vol. 47(2), pages 310-340, August.

    More about this item

    Keywords

    IBNR claims ladder; claims reserve forecast; stochastic claim inflation; claims risk exposure; link ratio function; property-casualty insurance; insurance accounting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • M49 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:23235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.