IDEAS home Printed from
   My bibliography  Save this paper

Determination of stochastic vs. deterministic trend in quarterly GDP of Pakistan


  • Khan, Zahid
  • Asghar, Zahid


Many economic and financial time series show evidence of trending behavior or non stationarity in the mean. An important econometric goal is determining the most proper form of the trend in the data. The transformations of series depend on whether the series is trend stationary or difference stationary. In this paper, study is conducted to declare the nature of trend component in quarterly GDP of Pakistan whether it is trend stationary or difference stationary. It is necessary to know, because trend stationary and difference stationary models imply very different short run and long run dynamics. We have explored the type of trend in GDP series by ADF unit root test and also support our arguments by empirical distribution instead of asymptotical ones i.e., bootstrapping test. The purpose of the paper is not only to investigate the type of trend in the series by conventional methods but also to motivate small distribution theory like bootstrapping techniques that can helps ones in selection of advocate model for observed series.

Suggested Citation

  • Khan, Zahid & Asghar, Zahid, 2009. "Determination of stochastic vs. deterministic trend in quarterly GDP of Pakistan," MPRA Paper 22091, University Library of Munich, Germany, revised 10 Apr 2010.
  • Handle: RePEc:pra:mprapa:22091

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    2. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Bootstrapping; Stationarity; Pivotal statistic; Unit root;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22091. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.