IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonstationary Optimization Approach for Finding Universal Portfolios

  • Gaivoronski, A
  • Stella, F

The definition of universal portfolio was introduced in the nancial literature in order to describe the class of portfolios which are constructed directly from the available observations of the stocks behavior without any assumptions about their statistical properties. Cover has shown that one can construct such portfolio using only observations of the past stock prices which generates the same asymptotic wealth growth as the best constant rebalanced portfolio which is constructed with the full knowledge of the future stock market behavior. In this paper we construct universal portfolios using totally different set of ideas drawn from nonstationary stochastic optimization. Also our portfolios yield the same asymptotic growth of wealth as the best constant rebalanced portfolio constructed with the perfect knowledge of the future, but they are less demanding computationally. Besides theoretical study, we present computational evidence using data from New York Stock Exchange which shows, among other things, superior performance of portfolios which explicitly take into account possible nonstationary market behavior.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/21913/1/MPRA_paper_21913.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 21913.

as
in new window

Length:
Date of creation: 2000
Date of revision:
Handle: RePEc:pra:mprapa:21913
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
  2. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
  3. Farshid Jamshidian, 1992. "Asymptotically Optimal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 131-150.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21913. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.