IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/21246.html
   My bibliography  Save this paper

Measuring market risk using extreme value theory

Author

Listed:
  • Mapa, Dennis S.
  • Suaiso, Oliver Q.

Abstract

The adoption of Basel II standards by the Bangko Sentral ng Pilipinas initiates financial institutions to develop value-at-risk (VaR) models to measure market risk. In this paper, two VaR models are considered using the peaks-over-threshold (POT) approach of the extreme value theory: (1) static EVT model which is the straightforward application of POT to the bond benchmark rates; and (2) dynamic EVT model which applies POT to the residuals of the fitted AR-GARCH model. The results are compared with traditional VaR methods such as RiskMetrics and AR-GARCH-type models. The relative size, accuracy and efficiency of the models are assessed using mean relative bias, backtesting, likelihood ratio tests, loss function, mean relative scaled bias and computation of market risk charge. Findings show that the dynamic EVT model can capture market risk conservatively, accurately and efficiently. It is also practical to use because it has the potential to lower a bank’s capital requirements. Comparing the two EVT models, the dynamic model is better than static as the former can address some issues in risk measurement and effectively capture market risks.

Suggested Citation

  • Mapa, Dennis S. & Suaiso, Oliver Q., 2009. "Measuring market risk using extreme value theory," MPRA Paper 21246, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:21246
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/21246/1/MPRA_paper_21246.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    2. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    3. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
    4. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    7. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cayton, Peter Julian A. & Mapa, Dennis S., 2012. "Time-varying conditional Johnson SU density in value-at-risk (VaR) methodology," MPRA Paper 36206, University Library of Munich, Germany.
    2. Mapa, Dennis S. & Cayton, Peter Julian & Lising, Mary Therese, 2009. "Estimating Value-at-Risk (VaR) using TiVEx-POT Models," MPRA Paper 25772, University Library of Munich, Germany.

    More about this item

    Keywords

    extreme value theory; peaks-over-threshold; value-at-risk; market risk; risk management;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21246. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.