IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/16378.html
   My bibliography  Save this paper

Modeling extreme but plausible losses for credit risk: a stress testing framework for the Argentine Financial System

Author

Listed:
  • Gutierrez Girault, Matias Alfredo

Abstract

While not being widespread, stress tests of credit risk are not new in the Argentine financial system, neither for financial intermediaries nor for the Central Bank. However, they are more often based on rule-of-thumb approaches than on systematic, model based methodologies. The objective of this paper is to fill this gap. With a database that covers the 1994-2006 period we implement a three staged approach. First, we use bank balance sheet data to estimate a dynamic panel data model, with different statistical methodologies, to explain bank losses for credit risk with bank-specific and macroeconomic variables. In a second step, the macroeconomic drivers of bank losses, real GDP growth and cost of short term credit, are modeled with a Vector Autoregression (VAR). The VAR shows the effect of the variables (i.e. risk factors) that we find dominate the domestic business cycle: the price of commodities, the sovereign risk and the federal funds rate. Finally, we use this toolkit to perform deterministic and stochastic scenario analysis. In the first case we use the behavior of the risk factors during the crisis of 1995 (Tequila contagion) and 2001 (Currency Board collapse), and we implement a subjective scenario as well. The stochastic scenarios are performed by Monte Carlo with two alternative methodologies: a non-parametric bootstrapping approach and drawing repeatedly from a multivariate normal distribution. When comparing the estimated unexpected losses to available capital, we find that currently the Argentine financial system is adequately capitalized to absorb the higher losses that would take place in a stress situation.

Suggested Citation

  • Gutierrez Girault, Matias Alfredo, 2008. "Modeling extreme but plausible losses for credit risk: a stress testing framework for the Argentine Financial System," MPRA Paper 16378, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:16378
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/16378/1/MPRA_paper_16378.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Behr, Andreas, 2003. "A comparison of dynamic panel data estimators: Monte Carlo evidence and an application to the investment function," Discussion Paper Series 1: Economic Studies 2003,05, Deutsche Bundesbank.
    2. Bruno, Giovanni S.F., 2005. "Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models," Economics Letters, Elsevier, vol. 87(3), pages 361-366, June.
    3. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    4. Gutierrez Girault, Matias, 2006. "Non – parametric estimation of conditional and unconditional loan portfolio loss distributions with public credit registry data," MPRA Paper 9798, University Library of Munich, Germany, revised Jun 2007.
    5. Ruth Judson & Ann L. Owen, "undated". "Estimating Dynamic Panel Data Models: A Practical Guide for Macroeconomists," Finance and Economics Discussion Series 1997-03, Board of Governors of the Federal Reserve System (U.S.).
    6. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    7. Marcucci, Juri & Quagliariello, Mario, 2008. "Is bank portfolio riskiness procyclical: Evidence from Italy using a vector autoregression," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(1), pages 46-63, February.
    8. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    9. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    10. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    11. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    stress test; credit risk; dynamic panel data; Monte Carlo;

    JEL classification:

    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.