IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/127332.html
   My bibliography  Save this paper

طراحی سبد بهینه پویای سرمایه گذاری با حداقل ریسک: شواهدی جدید از الگوی خودرگرسیون برداری متغیر در زمان
[Dynamic Optimal Portfolio Design with Minimum Risk: New Evidence from the Time Varying Parameter Vector Autoregression Model]

Author

Listed:
  • Farahanifard, Saeed
  • Rahimi Kahkashi, Sanaz
  • Roudari, Soheil

Abstract

This study aims to design an optimal investment portfolio in order to reduce risk and enhance returns. To this end, daily data of 10 companies listed on the Tehran Stock Exchange over the period from 08/08/2016 to 02/01/2024 were analyzed. The research methodology is based on the Time Varying Parameter Vector Autoregression (TVP VAR) model and employs the Minimum Variance Portfolio (MVP), Minimum Correlation Portfolio (MCP), and Minimum Connectedness Portfolio (MCoP) approaches for portfolio construction. The findings indicate that the portfolio with the minimum variance strategy yields the highest cumulative return. Under normal market conditions, the highest optimal weights are allocated to Damavand (19%), TAPICO (18%), and Seshahed (15%), whereas under bullish and bearish market conditions, the asset composition changes significantly. The analysis of dynamic optimal weights shows that some firms, such as Shetran and TAPICO, play a key role in risk hedging during specific periods. The results emphasize that the use of dynamic and time varying models enhances analytical accuracy and better reflects market realities. Accordingly, training investors in dynamic portfolio management and the use of advanced tools for portfolio adjustment is recommended. The findings have important implications for policymakers and market participants and highlight the necessity of designing flexible investment policies.

Suggested Citation

  • Farahanifard, Saeed & Rahimi Kahkashi, Sanaz & Roudari, Soheil, 2024. "طراحی سبد بهینه پویای سرمایه گذاری با حداقل ریسک: شواهدی جدید از الگوی خودرگرسیون برداری متغیر در زمان [Dynamic Optimal Portfolio Design with Minimum Risk: New Evidence from the Time Varying Parame," MPRA Paper 127332, University Library of Munich, Germany, revised 16 Feb 2025.
  • Handle: RePEc:pra:mprapa:127332
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/127332/1/MPRA_paper_127332.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:127332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.