IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11099.html
   My bibliography  Save this paper

The number of equilibria of smooth infinite economies with separable utilities

Author

Listed:
  • Covarrubias, Enrique

Abstract

We construct an index theorem for smooth infinite economies with separable utilities that shows that generically the number of equilbria is odd. As a corollary, this gives a new proof of existence and gives conditions that guarantee global uniqueness of equilibria.

Suggested Citation

  • Covarrubias, Enrique, 2008. "The number of equilibria of smooth infinite economies with separable utilities," MPRA Paper 11099, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11099
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11099/1/MPRA_paper_11099.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mas-Colell,Andreu, 1990. "The Theory of General Economic Equilibrium," Cambridge Books, Cambridge University Press, number 9780521388702, March.
    2. Chris Shannon & William R. Zame, 2002. "Quadratic Concavity and Determinacy of Equilibrium," Econometrica, Econometric Society, vol. 70(2), pages 631-662, March.
    3. Covarrubias Enrique, 2010. "Regular Infinite Economies," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-21, July.
    4. Mas-Colell, Andreu, 1991. "Indeterminacy in Incomplete Market Economies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(1), pages 45-61, January.
    5. Jouini, Elyes, 1992. "An index theorem for nonconvex production economies," Journal of Economic Theory, Elsevier, vol. 57(1), pages 176-196.
    6. Kehoe, Timothy J. & Levine, David K. & Romer, Paul M., 1990. "Determinacy of equilibria in dynamic models with finitely many consumers," Journal of Economic Theory, Elsevier, vol. 50(1), pages 1-21, February.
    7. GIRAUD, Gaël, 2000. "An algebraic index theorem for non-smooth economies," CORE Discussion Papers 2000016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. repec:dau:papers:123456789/5638 is not listed on IDEAS
    9. Hervé Crès & Tobias Markeprand & Mich Tvede, 2009. "Incomplete Financial Markets and Jumps in Asset Prices," Discussion Papers 09-12, University of Copenhagen. Department of Economics.
    10. Chris Shannon., 1996. "Determinacy of Competitive Equilibria in Economies with Many Commodities," Economics Working Papers 96-249, University of California at Berkeley.
    11. Dana, Rose Anne, 1993. "Existence and Uniqueness of Equilibria When Preferences Are Additively Separable," Econometrica, Econometric Society, vol. 61(4), pages 953-957, July.
    12. Momi, Takeshi, 2003. "The index theorem for a GEI economy when the degree of incompleteness is even," Journal of Mathematical Economics, Elsevier, vol. 39(3-4), pages 273-297, June.
    13. Hervés-Beloso, Carlos & Monteiro, Paulo Klinger, 2009. "Existence, continuity and utility representation of strictly monotonic preferences on continuum of goods commodity spaces," MPRA Paper 15157, University Library of Munich, Germany.
    14. Kehoe, Timothy J, 1983. "Regularity and Index Theory for Economies with Smooth Production Technologies," Econometrica, Econometric Society, vol. 51(4), pages 895-917, July.
    15. Kehoe, Timothy J. & Levine, David K. & Mas-Colell, Andreu & Zame, William R., 1989. "Determinacy of equilibrium in large-scale economies," Journal of Mathematical Economics, Elsevier, vol. 18(3), pages 231-262, June.
    16. Timothy J. Kehoe & David K. Levine & Andreu Mas-Colell & William Zame, 1989. "Determinacy of Equilibrium in Large Square Economies," Levine's Working Paper Archive 46, David K. Levine.
    17. Anderson, Robert M. & Raimondo, Roberto C., 2007. "Incomplete markets with no Hart points," Theoretical Economics, Econometric Society, vol. 2(2), June.
    18. Mandel, Antoine, 2008. "An index formula for production economies with externalities," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1385-1397, December.
    19. Kehoe, Timothy J, 1980. "An Index Theorem for General Equilibrium Models with Production," Econometrica, Econometric Society, vol. 48(5), pages 1211-1232, July.
    20. Balasko, Yves, 1975. "Some results on uniqueness and on stability of equilibrium in general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 2(2), pages 95-118.
    21. Hervés-Beloso, C. & Monteiro, P.K., 2010. "Strictly monotonic preferences on continuum of goods commodity spaces," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 725-727, September.
    22. Kubler, Felix & Schmedders, Karl, 2000. "Computing Equilibria in Stochastic Finance Economies," Computational Economics, Springer;Society for Computational Economics, vol. 15(1-2), pages 145-172, April.
    23. Chichilnisky, Graciela & Zhou, Yuqing, 1998. "Smooth infinite economies," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 27-42, January.
    24. Predtetchinski, Arkadi, 2006. "A new proof of the index formula for incomplete markets," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 626-635, August.
    25. Araujo, A., 1988. "The non-existence of smooth demand in general banach spaces," Journal of Mathematical Economics, Elsevier, vol. 17(4), pages 309-319, September.
    26. Dierker, Egbert, 1993. "Regular economies," Handbook of Mathematical Economics,in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 4, volume 2, chapter 17, pages 795-830 Elsevier.
    27. Hens,Thorsten, 1991. "Structure of general equilibrium models with incomplete markets and a single consumption good," Discussion Paper Serie A 353, University of Bonn, Germany.
    28. Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics,in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898 Elsevier.
    29. Balasko, Yves, 1997. "The natural projection approach to the infinite-horizon model," Journal of Mathematical Economics, Elsevier, vol. 27(3), pages 251-263, April.
    30. Dierker, Egbert, 1972. "Two Remarks on the Number of Equilibria of an Economy," Econometrica, Econometric Society, vol. 40(5), pages 951-953, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Covarrubias, Enrique, 2011. "The equilibrium set of economies with a continuous consumption space," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 137-142, March.
    2. Covarrubias, Enrique, 2013. "Global invertibility of excess demand functions," MPRA Paper 47300, University Library of Munich, Germany.

    More about this item

    Keywords

    Uniqueness; determinacy; equilibria; infinite economy; Fredholm map; equilibrium manifold; Banach manifold; index theorem; vector field; Rothe;

    JEL classification:

    • D50 - Microeconomics - - General Equilibrium and Disequilibrium - - - General
    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11099. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.