IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/106328.html
   My bibliography  Save this paper

Design Flaw of the Synthetic Control Method

Author

Listed:
  • Kuosmanen, Timo
  • Zhou, Xun
  • Eskelinen, Juha
  • Malo, Pekka

Abstract

Synthetic control method (SCM) identifies causal treatment effects by constructing a counterfactual treatment unit as a convex combination of donors in the control group, such that the weights of donors and predictors are jointly optimized during the pre-treatment period. This paper demonstrates that the true optimal solution to the SCM problem is typically a corner solution where all weight is assigned to a single predictor, contradicting the intended purpose of predictors. To address this inherent design flaw, we propose to determine the predictor weights and donor weights separately. We show how the donor weights can be optimized when the predictor weights are given, and consider alternative data-driven approaches to determine the predictor weights. Re-examination of the two original empirical applications to Basque terrorism and California's tobacco control program demonstrates the complete and utter failure of the existing SCM algorithms and illustrates our proposed remedies.

Suggested Citation

  • Kuosmanen, Timo & Zhou, Xun & Eskelinen, Juha & Malo, Pekka, 2021. "Design Flaw of the Synthetic Control Method," MPRA Paper 106328, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:106328
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/106328/1/MPRA_paper_106328.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/106390/14/MPRA_paper_106390.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew A. Cole & Robert J R Elliott & Bowen Liu, 2020. "The Impact of the Wuhan Covid-19 Lockdown on Air Pollution and Health: A Machine Learning and Augmented Synthetic Control Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 553-580, August.
    2. Nicholas Bloom & John Van Reenen, 2007. "Measuring and Explaining Management Practices Across Firms and Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(4), pages 1351-1408.
    3. Sarah Bohn & Magnus Lofstrom & Steven Raphael, 2014. "Did the 2007 Legal Arizona Workers Act Reduce the State's Unauthorized Immigrant Population?," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 258-269, May.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    6. Acemoglu, Daron & Johnson, Simon & Kermani, Amir & Kwak, James & Mitton, Todd, 2016. "The value of connections in turbulent times: Evidence from the United States," Journal of Financial Economics, Elsevier, vol. 121(2), pages 368-391.
    7. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    8. Martin Becker & Stefan Klößner, 2017. "Estimating the economic costs of organized crime by synthetic control methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1367-1369, November.
    9. Eduardo Cavallo & Sebastian Galiani & Ilan Noy & Juan Pantano, 2013. "Catastrophic Natural Disasters and Economic Growth," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1549-1561, December.
    10. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    11. Becker, Martin & Klößner, Stefan, 2018. "Fast and reliable computation of generalized synthetic controls," Econometrics and Statistics, Elsevier, vol. 5(C), pages 1-19.
    12. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    13. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    14. Henrik Jacobsen Kleven & Camille Landais & Emmanuel Saez, 2013. "Taxation and International Migration of Superstars: Evidence from the European Football Market," American Economic Review, American Economic Association, vol. 103(5), pages 1892-1924, August.
    15. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    16. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    17. Martin Becker & Stefan Klößner & Gregor Pfeifer, 2018. "Cross-Validating Synthetic Controls," Economics Bulletin, AccessEcon, vol. 38(1), pages 603-609.
    18. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    19. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    20. Pekka Malo & Juha Eskelinen & Xun Zhou & Timo Kuosmanen, 2024. "Computing Synthetic Controls Using Bilevel Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1113-1136, August.
    21. Stefan Klößner & Ashok Kaul & Gregor Pfeifer & Manuel Schieler, 2018. "Comparative politics and the synthetic control method revisited: a note on Abadie et al. (2015)," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pekka Malo & Juha Eskelinen & Xun Zhou & Timo Kuosmanen, 2024. "Computing Synthetic Controls Using Bilevel Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1113-1136, August.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pekka Malo & Juha Eskelinen & Xun Zhou & Timo Kuosmanen, 2024. "Computing Synthetic Controls Using Bilevel Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1113-1136, August.
    2. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2021. "Decoupling synthetic control methods to ensure stability, accuracy and meaningfulness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 549-584, December.
    3. Klößner, Stefan & Pfeifer, Gregor, 2015. "Synthesizing Cash for Clunkers: Stabilizing the Car Market, Hurting the Environment," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113207, Verein für Socialpolitik / German Economic Association.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    6. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    7. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    8. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: How Tax Salience and Fuel Substitution Mediate Climate and Health Benefits," Discussion Papers of DIW Berlin 2041, DIW Berlin, German Institute for Economic Research.
    9. Lucke, Bernd, 2022. "Growth Effects of European Monetary Union: A Synthetic Control Approach," MPRA Paper 115373, University Library of Munich, Germany.
    10. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: Causal Effects of Fuel Taxation and Mediating Mechanisms for Reducing Climate and Pollution Costs," CESifo Working Paper Series 10508, CESifo.
    11. Gregor Pfeifer & Fabian Wahl & Martyna Marczak, 2018. "Illuminating the World Cup effect: Night lights evidence from South Africa," Journal of Regional Science, Wiley Blackwell, vol. 58(5), pages 887-920, November.
    12. Lucke, Bernd, 2022. "Growth Effects of European Monetary Union: A Synthetic Control Approach," MPRA Paper 120662, University Library of Munich, Germany, revised 27 Mar 2024.
    13. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    14. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    15. Samuel Verevis & Murat Üngör, 2021. "What has New Zealand gained from The FTA with China?: Two counterfactual analyses†," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(1), pages 20-50, February.
    16. Tomasz Serwach, 2023. "The European Union and within‐country income inequalities. The case of the new member states," The World Economy, Wiley Blackwell, vol. 46(7), pages 1890-1939, July.
    17. Kleis, Mischa & Moessinger, Marc-Daniel, 2016. "The long-run effect of fiscal consolidation on economic growth: Evidence from quantitative case studies," ZEW Discussion Papers 16-047, ZEW - Leibniz Centre for European Economic Research, revised 2016.
    18. Becker, Martin & Klößner, Stefan, 2018. "Fast and reliable computation of generalized synthetic controls," Econometrics and Statistics, Elsevier, vol. 5(C), pages 1-19.
    19. Nuno Garoupa & Rok Spruk, 2024. "Populist Constitutional Backsliding and Judicial Independence: Evidence from Turkiye," Papers 2410.02439, arXiv.org.
    20. Ferman, Bruno & Pinto, Cristine, 2016. "Revisiting the Synthetic Control Estimator," MPRA Paper 73982, University Library of Munich, Germany.

    More about this item

    Keywords

    Causal e�ects; Comparative case studies; Policy impact assessment; Treatment e�ect models;
    All these keywords.

    JEL classification:

    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:106328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.