IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/100857.html

Unit Root Testing in ARMA Models: A Likelihood Ratio Approach

Author

Listed:
  • Hernández, Juan R.

Abstract

In this paper I propose a Likelihood Ratio test for a unit root (LR) with a local-to-unity Autoregressive parameter embedded in ARMA(1,1) models. By dealing explicitly with dependence in a time series through the Moving Average, as opposed to the long Autorregresive lag approximation, the test shows gains in power and has good small-sample properties. The asymptotic distribution of the test is shown to be independent of the short-run parameters. The Monte Carlo experiments show that the LR test has higher power than the Augmented Dickey Fuller test for several sample sizes and true values of the Moving Average parameter. The exception is the case when this parameter is very close to -1 with a considerably small sample size.

Suggested Citation

  • Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:100857
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/100857/1/MPRA_paper_100857.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 2009. "Discrete Time Representations Of Cointegrated Continuous Time Models With Mixed Sample Data," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1030-1049, August.
    2. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
    3. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    4. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    5. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212, Elsevier.
    6. Rolf Larsson, 1998. "Bartlett Corrections for Unit Root Test Statistics," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 425-438, July.
    7. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    8. Saikkonen, Pentti & Lütkepohl, Helmut, 1999. "Local Power Of Likelihood Ratio Tests For The Cointegrating Rank Of A Var Process," Econometric Theory, Cambridge University Press, vol. 15(1), pages 50-78, February.
    9. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models. I. Time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    10. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    11. Michael Jansson & Morten Ørregaard Nielsen, 2012. "Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 80(5), pages 2321-2332, September.
    12. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    14. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    15. Chambers, Marcus J. & Roderick McCrorie, J., 2007. "Frequency domain estimation of temporally aggregated Gaussian cointegrated systems," Journal of Econometrics, Elsevier, vol. 136(1), pages 1-29, January.
    16. Saikkonen, Pentti, 2001. "Statistical Inference In Cointegrated Vector Autoregressive Models With Nonlinear Time Trends In Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 17(2), pages 327-356, April.
    17. Saikkonen, Pentti, 2001. "Consistent Estimation In Cointegrated Vector Autoregressive Models With Nonlinear Time Trends In Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 17(2), pages 296-326, April.
    18. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    19. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    20. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    21. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    22. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    23. Rossana, Robert J & Seater, John J, 1995. "Temporal Aggregation and Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 441-451, October.
    24. Saikkonen, Pentti, 1995. "Problems with the Asymptotic Theory of Maximum Likelihood Estimation in Integrated and Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 11(5), pages 888-911, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," Working Papers 2016-03, Banco de México.
    2. Zhou, Bo, 2024. "Semiparametrically optimal cointegration test," Journal of Econometrics, Elsevier, vol. 242(2).
    3. Chambers, M.J. & McCrorie, J.R., 2004. "Frequency Domain Gaussian Estimation of Temporally Aggregated Cointegrated Systems," Discussion Paper 2004-40, Tilburg University, Center for Economic Research.
    4. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2011. "A Class of Simple Distribution-free Rank-based Unit Root Tests (Revision of DP 2010-72)," Discussion Paper 2011-002, Tilburg University, Center for Economic Research.
    5. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    6. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    7. repec:hal:journl:peer-00834424 is not listed on IDEAS
    8. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    9. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.
    10. Isabel Cortés-Jiménez & Manuel Artís, 2005. "The role of the tourism sector in economic development - Lessons from the Spanish experience," ERSA conference papers ersa05p488, European Regional Science Association.
    11. Gabriel Zsurkis & JoÃo Nicolau & Paulo M. M. Rodrigues, 2021. "A Re‐Examination of Inflation Persistence Dynamics in OECD Countries: A New Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 935-959, August.
    12. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    13. repec:esx:essedp:767 is not listed on IDEAS
    14. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    15. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    16. Tianhao Wang & Yingcun Xia, 2015. "Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1083-1099, September.
    17. Joscha Beckmann & Ansgar Belke & Michael Kühl, 2011. "The dollar-euro exchange rate and macroeconomic fundamentals: a time-varying coefficient approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 147(1), pages 11-40, April.
    18. Maurice Kugler & Reza Ofoghi, 2005. "Does Insurance Promote Economic Growth? Evidence from the UK," Money Macro and Finance (MMF) Research Group Conference 2005 8, Money Macro and Finance Research Group.
    19. Sven Otto, 2021. "Unit root testing with slowly varying trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 85-106, January.
    20. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    21. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    22. Dimitriou-Fakalou, Chrysoula, 2019. "On accepting the edge-effect (for the inference of ARMA-type processes in Z2)," Econometrics and Statistics, Elsevier, vol. 10(C), pages 53-70.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:100857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.