IDEAS home Printed from https://ideas.repec.org/p/pdn/ciepap/130.html
   My bibliography  Save this paper

Nash Smoothing on the Test Bench: Ha-Essential Equilibria

Author

Listed:
  • Papatya Duman

    (Paderborn University)

  • Walter Trockel

    (Bielefeld University)

Abstract

We extend the analysis of van Damme (1987, Section 7.5) of the famous smoothing demand in Nash (1953) as an argument for the singular stability of the symmetric Nash bargaining solution among all Pareto ecient equilibria of the Nash demand game. Van Damme's analysis provides a clean mathematical framework where he substantiates Nash's conjecture by two fundamental theorems in which he proves that the Nash solution is among all Nash equilibria of the Nash demand game the only one that is H{essential. We show by generalizing this analysis that for any asymmetric Nash bargaining solution a similar stability property can be established that we call H {essentiality. A special case of our result for a = 1=2 is H1/2-essentiality that coincides with van Damme's H{essentiality. Our analysis deprives the symmetric Nash solution equilibrium of Nash's demand game of its exposed position and fortifies our conviction that, in contrast to the predominant view in the related literature, the only structural di erence between the asymmetric Nash solutions and the symmetric one is that the latter one is symmetric.

Suggested Citation

  • Papatya Duman & Walter Trockel, 2020. "Nash Smoothing on the Test Bench: Ha-Essential Equilibria," Working Papers CIE 130, Paderborn University, CIE Center for International Economics.
  • Handle: RePEc:pdn:ciepap:130
    as

    Download full text from publisher

    File URL: http://groups.uni-paderborn.de/wp-wiwi/RePEc/pdf/ciepap/WP130.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    2. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    4. Trockel, Walter, 1996. "A Walrasian approach to bargaining games," Economics Letters, Elsevier, vol. 51(3), pages 295-301, June.
    5. Papatya Duman & Walter Trockel, 2016. "On non-cooperative foundation and implementation of the Nash solution in subgame perfect equilibrium via Rubinstein's game," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 83-107, December.
    6. Kaneko, Mamoru, 1981. "A bilateral monopoly and the nash cooperative solution," Journal of Economic Theory, Elsevier, vol. 24(3), pages 311-327, June.
    7. Papatya Duman, 2020. "Does Informational Equivalence Preserve Strategic Behavior? Experimental Results on Trockel’s Model of Selten’s Chain Store Story," Games, MDPI, vol. 11(1), pages 1-24, February.
    8. Carlsson, Hans, 1991. "A Bargaining Model Where Parties Make Errors," Econometrica, Econometric Society, vol. 59(5), pages 1487-1496, September.
    9. David Malueg, 2010. "Mixed-strategy equilibria in the Nash Demand Game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 243-270, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duman, Papatya & Trockel, Walter, 2020. "Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria," Center for Mathematical Economics Working Papers 632, Center for Mathematical Economics, Bielefeld University.
    2. Van Essen, Matthew, 2014. "A Simple Bargaining Model where Parties Make Errors," MPRA Paper 58952, University Library of Munich, Germany.
    3. Nejat Anbarci & Kang Rong & Jaideep Roy, 2019. "Random-settlement arbitration and the generalized Nash solution: one-shot and infinite-horizon cases," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(1), pages 21-52, July.
    4. Andersson, Ola & Argenton, Cédric & Weibull, Jörgen W., 2018. "Robustness to strategic uncertainty in the Nash demand game," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 1-5.
    5. Shiran Rachmilevitch, 2020. "Rewarding moderate behavior in a dynamic Nash Demand Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(2), pages 639-650, June.
    6. Hom M Pant, 1996. "Endogenous Behaviour of the Tariff Rate in a Political Economy," International Trade 9609001, University Library of Munich, Germany, revised 01 Oct 1996.
    7. Harstad, Bård, 2023. "Pledge-and-review bargaining," Journal of Economic Theory, Elsevier, vol. 207(C).
    8. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    9. Papatya Duman & Walter Trockel, 2016. "On non-cooperative foundation and implementation of the Nash solution in subgame perfect equilibrium via Rubinstein's game," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 83-107, December.
    10. Harstad, Bård, 2021. "A Theory of Pledge-and-Review Bargaining," Memorandum 5/2022, Oslo University, Department of Economics, revised 21 Jun 2021.
    11. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "Non-cooperative support for the asymmetric Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1951-1967, September.
    12. David Malueg, 2010. "Mixed-strategy equilibria in the Nash Demand Game," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 243-270, August.
    13. Anbarci, Nejat & Sun, Ching-jen, 2013. "Asymmetric Nash bargaining solutions: A simple Nash program," Economics Letters, Elsevier, vol. 120(2), pages 211-214.
    14. Guth, Werner & Ritzberger, Klaus & van Damme, Eric, 2004. "On the Nash bargaining solution with noise," European Economic Review, Elsevier, vol. 48(3), pages 697-713, June.
    15. Volodymyr Babich & Simone Marinesi & Gerry Tsoukalas, 2021. "Does Crowdfunding Benefit Entrepreneurs and Venture Capital Investors?," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 508-524, March.
    16. Yashiv, Eran, 2007. "Labor search and matching in macroeconomics," European Economic Review, Elsevier, vol. 51(8), pages 1859-1895, November.
    17. Takeuchi, Ai & Veszteg, Róbert F. & Kamijo, Yoshio & Funaki, Yukihiko, 2022. "Bargaining over a jointly produced pie: The effect of the production function on bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 134(C), pages 169-198.
    18. Eric van Damme & Xu Lang, 2022. "Two-Person Bargaining when the Disagreement Point is Private Information," Papers 2211.06830, arXiv.org, revised Jan 2024.
    19. Eran Hanany & D. Marc Kilgour & Yigal Gerchak, 2007. "Final-Offer Arbitration and Risk Aversion in Bargaining," Management Science, INFORMS, vol. 53(11), pages 1785-1792, November.
    20. Okada, Akira, 2010. "The Nash bargaining solution in general n-person cooperative games," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2356-2379, November.

    More about this item

    Keywords

    2-person bargaining games; {symmetric Nash solution; Nash demand game; Nash smoothing of games; H {essential Nash equilibrium;
    All these keywords.

    JEL classification:

    • B16 - Schools of Economic Thought and Methodology - - History of Economic Thought through 1925 - - - Quantitative and Mathematical
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D5 - Microeconomics - - General Equilibrium and Disequilibrium

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pdn:ciepap:130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WP-WiWi-Info or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cipadde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.