IDEAS home Printed from
   My bibliography  Save this paper

Divergent Trajectories of Urban Development in 287 Chinese Cities


  • Wang, Shenhao
  • Zhao, Jinhua


The urbanization and motorization of Chinese cities follow divergent trajectories. However, how the diversity occurred, particularly within the small and medium cities, is understudied. Using panel data from 287 cities from 2001 to 2014 and a time-series clustering method, this study identified representative trajectories along which Chinese cities were urbanized and motorized. Urbanization was measured by scale, wealth, urban form, and infrastructure; motorization by automobile, taxi, bus numbers, and subway lines. Chinese cities were classified into four clusters: 23 Cluster-1 cities were the large cities with heavy rails; 41 Cluster-2 cities were the low-density wealthy cities with auto-oriented mobility; 134 Cluster-3 cities were the low-density medium-wealth cities with moderate mobility levels; and 89 Cluster-4 cities were the high-density poor cities with lowest mobility levels. Comparing to the traditional three-tier structure, exclusively based on political tiers, the four-cluster structure respects the multi-dimensional nature of cities and reflects the essential diversities among the medium and small cities. While political tiers remain critical, other features including scale, density, infrastructure, and mobility patterns are also important: scale differentiates Cluster-1 from others; low density characterizes Clusters 2 and 3; heavy rail and auto-oriented mobility respectively identify Clusters 1 and 2. We contribute to China’s urban development literature by explicitly examining the temporal dimension, analyzing both urbanization and motorization, and incorporating all the medium and small cities in China. The distinct patterns of Clusters 2, 3, and 4 are evident, and the variation within them were as important as that between them and large cities.

Suggested Citation

  • Wang, Shenhao & Zhao, Jinhua, 2018. "Divergent Trajectories of Urban Development in 287 Chinese Cities," OSF Preprints cvjnx, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:cvjnx
    DOI: 10.31219/

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    2. Gregory K. Ingram, 1998. "Patterns of Metropolitan Development: What Have We Learned?," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1019-1035, June.
    3. Baum-Snow, Nathaniel & Kahn, Matthew E., 2000. "The effects of new public projects to expand urban rail transit," Journal of Public Economics, Elsevier, vol. 77(2), pages 241-263, August.
    4. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    5. Zachary Paul Neal, 2006. "Culinary Deserts, Gastronomic Oases: A Classification of US Cities," Urban Studies, Urban Studies Journal Limited, vol. 43(1), pages 1-21, January.
    6. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    7. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    8. Eric Heikkila & Ying Xu, 2014. "Seven Prototypical Chinese Cities," Urban Studies, Urban Studies Journal Limited, vol. 51(4), pages 827-847, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandros Dimitropoulos, 2014. "The Influence of Environmental Concerns on Drivers’ Preferences for Electric Cars," Tinbergen Institute Discussion Papers 14-128/VIII, Tinbergen Institute.
    2. Dirk Temme & Marcel Paulssen & Till Dannewald, 2007. "Integrating latent variables in discrete choice models – How higher-order values and attitudes determine consumer choice," SFB 649 Discussion Papers SFB649DP2007-065, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    4. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    5. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    6. Felipe Vásquez & Michael Hanemann, 2008. "Taste Indicators and Heterogeneous Revealed Preferences for Congestion in Recreation Demand," Working Papers 10-2008, Departamento de Economía, Universidad de Concepción.
    7. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    8. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    9. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    10. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    11. Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Does distance matter? Exploring the links among values, motivations, home location, and satisfaction in walking trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 198-208.
    12. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    13. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    14. Muhammad Zudhy Irawan & Prawira Fajarindra Belgiawan & Tri Basuki Joewono & Nurvita I. M. Simanjuntak, 2020. "Do motorcycle-based ride-hailing apps threaten bus ridership? A hybrid choice modeling approach with latent variables," Public Transport, Springer, vol. 12(1), pages 207-231, March.
    15. Glerum, Aurélie & Atasoy, Bilge & Bierlaire, Michel, 2014. "Using semi-open questions to integrate perceptions in choice models," Journal of choice modelling, Elsevier, vol. 10(C), pages 11-33.
    16. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
    17. Muñoz, Begoña & Monzon, Andres & López, Elena, 2016. "Transition to a cyclable city: Latent variables affecting bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 4-17.
    18. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    19. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    20. Kroesen, Maarten & Chorus, Caspar, 2020. "A new perspective on the role of attitudes in explaining travel behavior: A psychological network model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 82-94.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:cvjnx. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (OSF). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.